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Abstract (150 words) 

This paper develops recommendations on how to minimize the risk and size of bias in multilevel 

models if the scale of the neighborhood effect is unknown or data is not available to model the 

neighborhood-scale properly. These recommendations are derived from a comprehensive set of 

“hybrid” simulation experiments that combine a Monte Carlo simulation approach with census 

information at the block-, block-group-, and tract-level to generate plausible data scenarios. 

Results suggest that, all else equal, the larger scale is a safer choice. Furthermore, results caution 

against the use and interpretation of level- two variances and intra-class-correlation coefficients. 

Three-level models should be estimated if possible, and modelfit statistics should be used to 

assess the scale, or, combination of scales, at which neighborhood effects operate. Results also 

suggest that the scale needs to be grossly mis-measured in order to cause significant bias.  

 

 

INTRODUCTION 

 

“Neighborhood” is a fluid concept whose meaning changes depending on the outcome, 

exposure and social group under consideration (Chaix, Merlo, Evans, Leal, and Havard 2009; 

Galster 2001; Guest and Lee 1984). Administrative units such as census tracts, block-groups and 

blocks can therefore hardly fit the demands of the concept. Nevertheless, census units, in 

particular census tracts, have remained the single most common neighborhood proxy in 

neighborhood effects research (Lee, Reardon, Firebaugh, Farrell, Matthews, and O'Sullivan 

2008; Matthews 2008), mostly because of their availability and extreme practicality. While new 

sophisticated approaches to operationalizing the neighborhood are being developed, “how much” 

and under what circumstances the use of census units affects the results of neighborhood effects 

research remains to be assessed.  

Defining the size of the neighborhood is an important conceptual and methodological 

issue in the measurement of neighborhoods. The geographic scale at which neighborhood effects 

operate is rarely known and even if it can be hypothesized, data limitations often force 

researchers to adopt a particular geographic scale for their analysis. In addition, since the ACS 

has replaced the census SF3 questionnaire large margins of errors of estimates at the block-

group-level often force researchers to use tract-level information (Voss 2011). Furthermore, 

understanding scale sensitivity of neighborhood-effects also provides information on the 

importance of boundary issues in neighborhood effects research. A low scale sensitivity of 

results from multilevel models, for example, suggests that boundary issues at a particular scale 
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are unlikely to be critical for the prediction of neighborhood effects: If changing the scale of the 

neighborhood does matter little for the prediction of neighborhood effects, then, fine-tuning their 

boundaries to better reflect actual neighborhood characteristics are unlikely to influence the 

prediction of model parameters either. 

Prior research in Geography on the modifiable area unit problem has demonstrated that 

the impact of scale and boundary issues on statistical analysis can be substantial (for example: 

Gehlke and Biehl 1934, Openshaw 1978, Arabia 1989, Fotheringham and Wong 1991). 

Spielman and Yoo (2009) use a simulation study to demonstrate that even the sign of the 

predictor-outcome relationship can change under extreme conditions. Studies by geographers, 

however, have not assessed the modifiable area unit in a multilevel framework and the study by 

Spielman and Yoo, uses fully simulated data and yields no information on whether or not such 

extreme biases are likely to occur in “every-day” statistical analysis. 

My goal is to generate evidence on the kind and magnitude of bias that occur if a 

neighborhood is assumed to be either bigger or smaller than the scale at which the actual 

neighborhood effects (or combination of neighborhood effects) are operating. In addition, I will 

explore the factors that exacerbate or mitigate this kind of bias. The outcome for this simulation 

study is Body Mass Index (BMI). BMI has been chosen because it is a health outcome that is of 

major importance to population health and because it has been the subject of numerous 

contextual studies that have found neighborhood-effects at various geographic scales. It will be 

shown however, that results from this study can be generalized to all continuous outcomes that 

are approximately normally distributed.  

In order to assess not only the direction but also the magnitude of the bias that is 

introduced by misrepresentation of the scale this study uses, what I call, a hybrid simulation 

experiment. This approach is different from a full simulation study in that it does not generate all 

data in the simulation process. Instead, this approach uses census-information of Los Angeles 

County and parameters derived from a multilevel model estimated on the Los Angeles Family 

and Neighborhood Survey to generate plausible scenarios that are similar to those that 

researchers are likely to encounter in their own work. 

I find that scale effects can introduce substantial downward bias into the estimates of the 

fixed and random effects at the neighborhood-level. All else equal, modeling a larger scale 

reduces the risk and size of bias. The magnitude of the bias depends, however strongly on how 

much the distribution of neighborhood characteristics changes when being aggregated at 

different scales. The variance components and intra-class-correlation coefficients are hugely 

influenced by scale-mis-measurement. Their bias can lead to over- or underestimation depending 

on the type of scenario. I also find that modelfit measures can serve under certain circumstances 

to detect the “right” scale. While scale issues can introduce considerable bias into the estimates 

of the fixed and random effects of multilevel models they matter only if the scale is grossly mis-

measured. I will briefly describe the simulation approach and data and give an example of the 

results of the most complex simulations. Detailed recommendations that derive from the results 

of the full set of simulations are given in the conclusion.  

The final paper will motivate and present the simulation scenarios in more detail and use 

graphic representation methods similar to Figure 1 to summarize the findings from all types of 

scenarios. 
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METHOD 

 

The hybrid simulation approach used for this study grafts the controlled environment of a 

simulation experiment on “real-time” census information (census boundaries and characteristics 

at the block-, block-group- and tract-level (Table 1)) from Los Angeles County. As a point of 

departure I further use simulation parameters borrowed from a multilevel model estimated on 

data from the Los Angeles Neighborhood and Family Survey to generate realistic starting 

scenarios (Table 2). 

Using a Monte-Carlo simulation framework I will generate sets of individual-level BMI 

values that each contain a neighborhood effect at the block, block-group and tract-level, or a 

combination of effects stemming from different contextual levels. On each set of outcomes three 

to four multilevel models will then be estimated, one assuming the “true” (combination of) 

scale(s), that is, the scale(s) at which the neighborhood effects were generated, and all possible 

two-level “false” models that model the neighborhood at a wrong scale. 

 The “true” model will reproduce the data-generating parameters; the false models will 

allow assessing how the estimates of  

(1) the neighborhood effect (the beta coefficient(s) of the neighborhood effect(s) ),  

(2) the neighborhood-level variance  

(3) and Intra-Class-Correlation Coefficient  

differ from the data-generating parameters when the wrong neighborhood definition is chosen. 

Three types of scale-variable scenarios will cover a broad array of possible combinations of 

neighborhood-scales: I build on the simplest scenario where  

(A)  one neighborhood effect acts at a single scale  

then, I built scenarios where  

(B) one contextual characteristic (e.g. percent Hispanic population) is operating through 

different mechanisms at two different scales 

and next generate scenarios where 

(C) two contextual predictors are operating at two different scales but are measured at only 

one scale. 

The starting scenarios will be manipulated in order to assess how the effect of misrepresenting 

the neighborhood scale varies by 

   (i) the strength of the underlying neighborhood effect and 

   (ii) the distributional qualities of the neighborhood predictor.  

Finally, I will assess  if  

(4) a modelfit measure (the Akaike criterion) can serve to detect the “true model” that adequately 

represents the neighborhood scale(s). 

Results of these scenarios present certain regularities that allow developing a set of 

recommendations for minimizing the risk and size of bias introduced by scale-mis measurement.  

 

 

DATA 

 

The real data-based simulation presented here requires two types of input: the distribution 

of neighborhood characteristics at the block, block-group and tract-level, as well as model 

parameters that translate neighborhood differences in the predictor variable into change in the 

individual level outcome. Neighborhood-level predictors come from the Summary File 1 (SF1) 
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from the 2000 census of Los Angeles County. An initial set of model parameters are drawn from 

a multilevel model that has been estimated on information from the first wave of the Los Angeles 

Family and Neighborhood Survey (Table 2).  

The simulation study relies on a 10% random sample of all Los Angeles County tracts 

that have at least one inhabitant. Table 1 shows the number of census units at each level of all 

LA County and the 10% sample used in this dissertation. I will use the percentage of Hispanic 

population, percentage of African American population and percentage of vacant units per 

census unit as neighborhood-level predictors.
1
 Table 1 compares their means and standard 

deviations at each of the three census levels in all of L.A. County and the 10% sample used for 

the simulations.  

For the present analysis, these variables are not only of interest because they are three 

common neighborhood-level predictors, but also because they constitute three different 

simulation scenarios. Note that each predictor differs in how its distribution changes across 

scales. Misrepresenting the neighborhood scale would matter less if a predictor had the exact 

same distribution at each level. If, however, a neighborhood characteristic had little between-unit 

variance at one scale but high between-neighborhood variance at another, choosing the “wrong” 

neighborhood scale would cause a larger distortion in the x-y relationships. Percent Hispanic for 

example, changes its variance little when aggregated at different levels while percent vacant 

units reduces its variance by almost one third when being aggregated at the tract-level instead of 

the block-level. Mis-measurement is therefore more likely to affect models that mis-represent the 

scale of the effect of percent vacant units compared to the effect of percent Hispanic population. 

 

 

RESULTS 

 

Table 3 presents as example the results of the most complex scenarios where one of the 

three neighborhood predictors is operating at the block- and another at the tract-level. Both are 

measured in turn with one true model (a three-level model) and two false models, a block-level 

and a tract-level model. Results are expressed as percent of the simulation parameters to 

facilitate comparisons. The beta-coefficients of the false block-level models can be found in 

Panel A and those yielded by the false tract-level models in Panel B. Each panel is made up of 

two leading columns that contain the results of the true three-level model (which yield estimates 

that account for 100% of the simulation parameter) and a set of 3x3 rectangular sub-panels. The 

off-diagonal sub-panels contain the results of the six pairs of predictors. The first row of sub-

panels in Panel A contains all results of block-level models that have been estimated on a true 

block-level effect of the predictor Hispanic and one other neighborhood predictor acting at the 

tract-level
2
. The second row of sub-panels lists the estimates of models on scenarios that contain 

a block-level effect of African-American and a tract-level effect of one of the other two 

predictors. Analogously, the first column of sub-panels contains the results of block-level models 

estimated on outcomes that contain true tract-level effects of the percent Hispanic in addition to 

                                                           
1
 From here on I will refer to these predictors only as, for example, “the percent Hispanic” instead of the percent 

Hispanic population. 
2
 Panel A: sub-panel in row 1, column 2: contains results of block-level models estimated on BMIs containing a 

block-level effect of percent Hispanic and a tract-level effect of percent African American;  Row 1, Column 3: 

results of block level models on BMIs containing a block-level effect of percent Hispanic and a tract-level effect 

percent vacant units etc… 
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another variable operating at the block-level. The second column of sub-panels then presents the 

results of block models estimated on outcomes containing a tract-level effect of the percent 

African American plus one of the other two neighborhood predictors operating at the block-level. 

In each sub-panel the beta-coefficient of the block-level effect is listed first and the coefficient of 

the tract-level predictor second. So for example, the second panel in the first row contains the 

results of the model that measures both the true block-level effect of percent Hispanic and the 

true tract-level effect of percent African American at the block-level. Panel B is organized in an 

analogous fashion but contains the results of all tract-level models on the same scenarios. To 

facilitate comparisons the columns containing the neighborhood effects that are falsely measured 

are labeled as such and their background is greyed.  

All else equal, tract models introduce much less bias to the mis-measured beta-

coefficients than do the block-level models. Thus, for example, in the two tract-level models on 

the outcomes containing the block-level effect of percent Hispanic at too big a scale the false 

beta coefficients reproduces the true effect by between 89% to 100%  (Table 3, Panel B).
3
 In 

comparison, true tract-level effects of percent Hispanic (first column of graphs), if measured 

falsely with a model that is too small (Panel A), yield beta- coefficients that capture only 

between 77-82% of the true effect.  Similarly, the true effect of the predictor, percent African 

American population, when captured with a model that assumes the scale to be too big 

reproduces the true effect almost exactly (i.e., close to 100 percent) or is just slightly over-

estimated for the two smallest effect sizes (Table 3,  Panel B, row two of sub-panels).  The 

block-level models, in comparison, under-estimate the true effect by 32 to 20% (Table 3, Panel 

B, second column of sub-panels, false coefficients for African American). As expected, the 

predictor that is most susceptible to mis-modeling of the scale is the percent vacant units. This 

predictor’s neighborhood effects are downward biased by 47% to 51% if they act at the block-

level but are measured with a tract-level model (Table 3, Panel B, last row of sub-panels).The 

tract-level effect that is falsely measured with a block-level model however, is biased downward 

by 89% to 86% (Table 3, Panel A, last column of sub-panels). The size of bias are strikingly 

consistent along each column in Panel A and along each row in Panel B. This similarity suggests 

that the bias introduced to the mis-measured effect does not depend on the combination of falsely 

and truly measured predictors in the model.   

Next, I will consider the truly measured neighborhood effects that are contained in each 

model along with the mis-measured neighborhood effect. (In Table 3) these are all effects that 

are not shaded grey). In Panel B the truly measured effect-sizes vary between 100% (tract-level 

effect of vacant units) and 112%.
4
 Since absolute effect sizes are small these differences would 

not have introduced any changes to the interpretation of results. 

Figure 1 presents the ICCs of both block- and tract-level. Each panel presents the ICCs of 

the block and the tract model for a particular predictor pair operating at the tract and the block-

level. The upper dashed grey line presents the ICC of the true three-level model for two 

neighborhoods, the lower dash-dot line traces the ICCs of a single neighborhood level only. The 

closer the symbols fall to the upper dashed grey line the closer would be the researcher’s 

                                                           
3
 The strongest (or weakest bias) are observed in most scenarios for the smallest effect size (b*0.5= 0.009). 

While none of the coefficients for this effect size is hugely different from the estimates of scenarios containing 

bigger effects it has to be noted that this is likely due either the sample size or the number of simulation runs being 

too small to reproduce such a small effect more reliably. In what follows I will therefore discuss the results for the 

bigger effect sizes and mention the result for b*0.5 separately, should they differ.  
4
 Please note that the absolute difference of 3.5% over estimation accounts for  only 0.001 point difference in BMI 

even for the biggest effect size. 
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conclusion to the “true” scenario. In all scenarios the block-level ICCs would lead to conclusions 

similar to those of the true models. In tract-level models, however the researchers would 

conclude that the between-neighborhood variance is only half as big as it is at both scales. The 

ICCs increase with effect size and more so if the mis-measured predictor has a high variance 

(e.g. Percent Hispanic). Overall, the bias in the ICC is substantial and its magnitude and direction 

depends on the type of mis-measurement and the size of the effect. 

 

 

CONCLUSION 

 

Based on the full set of simulation experiments that will be presented in the final paper, I am 

making the following recommendations for neighborhood effects researchers: 

 

1. If in doubt use a bigger scale but expect underestimation of neighborhood effects 

(beta-coefficients of neighborhood predictors). In my work the census tract 

proved to be the most robust level of measurement. 

 

2. If possible, always examine how the mean and variance of the predictors changes 

when aggregated at different scales. The size of the bias introduced by scale mis-

measurement can be minimal for predictors whose distribution varies little (and 

conversely important if the distribution of predictors changes drastically). 

 

3. If there is doubt as to whether the same effect is operating at multiple scales then:  

a. Estimate three level model, and use the AIC to compare two- and three- level 

models. 

b. If estimating a three level model is not possible, use the larger scale model, 

and expect underestimation of the total neighborhood effect. 

 

4. If there is some certainty on the scale of some effects but not on others then note 

that the truly measured effects are only affected little by the mis-measurement of 

other predictors in the models. 

 

5. Do not interpret the neighborhood level variances and ICC. 

 

6. Fine-tuning neighborhood boundaries is unlikely to improve the performance of 

multilevel models in predicting neighborhood effects since their results are  

relatively robust to moderate changes of scale (for example, block-group and 

tracts yielded comparable results). 
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Table 1: Means and standard deviations for the percent Hispanic population, African American 

population, percent vacant units for the block, block-group and tract-level of LA county and the 

10% sample  

 

 Sample LA County 

 

Block 

Level 

Block- 

Group 

Level 

Tract 

Level 

Block 

Level 

Block- 

Group 

Level 

Tract 

Level 

Hispanic 

 

37.43  

(32.899) 

43.135 

(31.668) 

44.152 

(30.566) 

 

29.02 

(31.748) 

 

41.828 

(29.861) 

 

43.469 

(29.492) 

African American 

 

9.324  

(19.323) 

10.438 

(18.515) 

9.502 

(15.792) 

 

7.35 

(17.286) 

 

10.204 

(17.571) 

 

9.607 

(15.685) 

Vacant Units 

 

3.955 

(6.725) 

4.411 

(3.767) 

4.533 

(3.643) 

 

3.38 

(8.209) 

 

4.156 

(4.156) 

 

4.362 

(4.09) 

n of 

neighborhoods 

 

6744 614 204 

 

89614 

 

6351 

 

2054 
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Table 2: Hierarchical Linear Model on sample of randomly selected adults of the Los Angeles 

Family and Neighborhood Survey (listwise deleted) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Coefficient 

t-

values 

 (std err)  

   

Intercept 24.931 40.32 

 (0.628)  

Age in years 0.018 3.73 

 (0.005)  

Female -0.927 -6 

 (0.155)  

African American  0.766 2.65 

(ref White) (0.289)  

Latino 0.918 3.9 

 (0.235)  

Asian 0.73 1.13 

 (0.649)  

Other Race -1.56 -2.47 

 (0.63)  

Living w partner 0.519 3.11 

 (0.167)  

Log family income 0.011 0.28 

 (0.041)  

High School degree 0.257 1.18 

 (0.217)  

Neighborhood Predictor  

Percent Hisp (0.017) 3.85 

 0.005  

   

Level 1 error 

Variance 13.75  

Level 2 error 

Variance 0.48  

N individuals 2337  

N tracts 90  
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Table 3: Relative difference of beta-coefficients and simulation parameters, in percent. 

 

 

 

PANEL A 

BLOCK 

MODELS 

   

True Eff.  Tract Hispanic Tract Af.-Am. Tract Vacant 

 b blk b Tr True False True False True False 

   
  Bk. Hisp Tr. A.-A. Bk. Hisp Tr. Vac 

Block 100 100   100 77.8 100.0 11.1 

Hisp 100 100   105.9 82.4 100.0 17.6 

 100 100   103.8 76.9 100.0 15.4 

 100 100   102.9 77.1 100.0 14.3 

   Bk A.-A. Tr Hisp   Bk A.-A. Tr. Vac 

Block 100 100 100 77.8   100.0 11.1 

Af.- Am. 100 100 111.8 82.4   105.9 11.8 

 100 100 107.7 80.8   103.8 15.4 

 100 100 108.6 80.0   102.9 14.3 

   Bk Vac Tr Hisp Bk A.-A. Tr. A.-A.   

Block 100 100 100.0 77.8 100.0 77.8   

Vac 100 100 105.9 82.4 111.8 82.4   

 100 100 103.8 80.8 107.7 76.9   

 100 100 105.7 80.0 108.6 77.1   

PANEL B 

TRACT 

MODELS 

                                      

                                     Tract 

                                           Hispanic 

  

Tract 

Af.-Am 

  

Tract 

Vacant 

 b blk b Tr False True False True False True 

   
  Bk. Hisp Tr. A.-A. Bk. Hisp Tr. Vac 

Block 100 100   100 100 88.9 88.9 

Hisp 100 100   100 100 100 100 

 100 100   96.2 100.0 96.2 100.0 

 100 100   97.1 100.0 97.1 100.0 

   Bk A.-A. Tr Hisp   Bk A.-A. Tr. Vac 

Block 100 100 100 100   100 100 

Af. 100 100 105.9 105.9   105.9 100.0 

Am 100 100 100.0 100.0   100.0 103.8 

 100 100 100.0 100.0   100.0 100.0 

   Bk Vac Tr Hisp Bk Vac Tr. A.-A.   

Block 100 100 55.6 100.0 55.6 100.0   

Vac 100 100 52.9 105.9 58.8 105.9   

 100 100 57.7 100.0 53.8 103.8   

 100 100 60.0 100.0 54.3 102.9   
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Figure 1: Monte Carlo estimates 

of ICC of block and tract models 

on six combinations of 

neighborhood predictors 

operating at the block and the 

tract level. 
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