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Abstract 

 

This paper examines and demonstrates importance of the adult modal age at death (M) in 

longevity research. Unlike the life expectancy at birth (e0) and median age at death, M is 

determined solely by old-age mortality as far as mortality follows the regular pattern. It 

represents the location of “old-age death heap” in the age distribution of deaths, and captures 

mortality shifts more accurately than conditional life expectancies such as e65. Due to these 

characteristics, patterns of trends and differentials in M can be noticeably different from those in 

other lifespan measures, as indicated in some examples. In addition, M plays central roles in 

major models of adult mortality such as the Gompertz, logistic and Weibull models. Although M 

may not be directly determined from erratic mortality data, a recently developed method for 

deriving M from the P-spline-smoothed mortality curve based on penalized Poisson likelihood is 

highly effective in estimating M. 
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1  Introduction 

 

The mankind witnessed a substantial increase in the length of human life during the last two 

centuries. In economically developed countries that currently have relatively low levels of 

mortality, the life expectancy at birth for both sexes rose from around 30 to 45 years in the mid-

nineteenth century to about 80 years in recent periods (Meslé and Vallin 2011). The longevity 

expansion resulted in a considerable growth of the elderly population and also led to increasing 

concern about inequalities in the lifespan (length of life) among populations and subpopulations. 

Monitoring and analysis of these longevity trends and differentials need to be based on 

proper and effective summarization of statistical data on human lifespan. There are two types of 

measures of mortality and survival. Some measures are expressed as proportion, estimated 

probability, hazard (force), or rate of death. Others, called lifespan indicators in this paper, are 

expressed in terms of the length of survival time. Three major types of lifespan indicators are the 

mean, median, and mode of the length-of-life distribution: life expectancy, median age at death, 

and modal age at death. The life expectancy at birth (e0) has been widely used, but increasing 

attention has recently been given to the modal age at death.  

Typically, the age distribution of deaths in human life tables is bimodal, with the first local 

mode at the left end (age zero) and the second local mode at an old age (Figure 1). In this paper, 

the older mode (the modal age at death among adults) is denoted by M. The number of deaths at 

the younger mode is greater than that at the older mode in high mortality regimes, but that at the 

older mode is greater in low mortality regimes. In economically developed countries, the older 

mode has been higher than the mode at age zero in most years during the last half a century. In 

France, for instance, the number of life table deaths at the older mode surpassed that at age 0 in 

1953 for females and in 1960 for males. Thus in this paper, M will be indicated simply as the 

modal age at death except in analyses of long-term trends. 

[Figure 1 about here] 

Whereas both the life expectancy at birth and median age at death are affected by mortality 

among infants, children, and young-age and middle-age adults, M is solely determined by old-

age mortality, as far as the mortality risk follows the regular, smooth pattern of “bath-tub” shape 

(see Appendix 1 for a more detailed discussion). This feature gives a special significance to M, 

because the lifespan extension during the recent few decades is mainly due to reduction in old-

age mortality (e.g., Wilmoth et al. 2000; Vallin and Meslé 2001; Meslé and Vallin 2006). 

Furthermore, the feature may make M suitable to be called a longevity measure: although 

defining “longevity” is beyond the scope to this paper, the concept seems to have been used not 

for simply indicating a duration of lifetime but for emphasizing old-age survival for reaching 

very high ages.  

Other widely used measures of old-age survival are life expectancies at some selected early 

old ages such as 50 and 65. The life expectancy conditional on survival to the selected old age is 

independent of mortality at young ages. However, as shown later, changes in those conditional 

life expectancies underestimate age shifts of old-age mortality, which are accurately reflected in 

changes in M.  

It is useful to characterize M in the context of the common pattern of age distribution of 

deaths in human populations, which is illustrated in Figure 1 for French women in 1960-1964. 

As originally indicated by Lexis (1878), the common pattern may be described as a sequence of 

three phases: (1) a steep fall in early childhood, from the relatively high frequency of deaths 

among new-born babies; (2) a low and fairly flat curve in late childhood through middle age; and 
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(3) a large, left-skewed heap of deaths in old age. Usually the shift from the first to second phase 

can be located around the typical age of puberty, but the transition from the second to third phase 

appears gradual. An improvement of old-age survival moves the heap to higher ages. Thus, the 

location of the old-age death heap on the age dimension may be considered as indicative of the 

level of longevity in the population. M, which is the location of the peak of the heap, is a 

summary measure representative of the location of old-age death heap.  

In this paper, we will examine and discuss usefulness of M in longevity research, combining 

previous findings and new results. We will briefly review past studies on M, investigate 

empirical patterns of trends and differentials in M in comparison with those in the other lifespan 

measures such as e0 and e65, clarify roles of M in broadly used mathematical models of adult 

mortality, and present a recommended method for estimating. Since a comprehensive 

international comparison is not a major purpose of this paper, we will mainly use French civilian 

data from the Human Mortality Database (2012) to illustrate widely observed patterns. (The time 

series do not include those in military services for 1914-1920 and 1940-1945.) Although M is 

important in studies of both period and cohort mortality, we will use period mortality data only, 

because the typical patterns of age variations in mortality and death (i.e., bath-tub pattern of 

mortality risk and three-phase pattern of death distribution) are common in both period and 

cohort data. 

 

2  Modal age at death in longevity research 

 

Use of M in longevity research is not a totally new approach. It has been advocated by some 

fellows in the past two centuries. According to Quételet (1835, 1848, 1871), the mode is not an 

arithmetic mean but a typical value alongside a normal curve which clearly accounts for the 

central value of the frequency distribution, representing the most common individual observation, 

limited by minimum and maximum values following the laws of nature.  

Following the publication of Quételet’s work “l’homme moyen”, Lexis (1878) also stated 

that M represents the most central and natural characteristic of the human longevity and that 

deaths occurring at and above M should be regarded as “normal” deaths following the right-hand 

side of a normal distribution. Lexis theorized the idea of normal life duration, characteristic of a 

natural and aging lifetime. He divided the distribution of deaths in three parts: (1) a J-curve right 

after birth corresponding to infant deaths; (2) the normal deaths around the late modal age at 

death which obey the law of accidental errors reflecting the natural lifetime; and (3) a transitional 

region between (1) and (2), where adult premature deaths partly overlap with the normal deaths. 

Following the work of Lexis, a number of researchers studied the age distribution of deaths 

to better describe the shape and the limits of the human longevity (Elderton 1903; Gumbel 1937; 

Greenwood and Irwin 1939; Clarke 1950; Benjamin 1959, 1963, 1964, 1982a, 1982b, 1988). 

However, M was not perceived as a key indicator of lifespan until the work of Kannisto (2000, 

2001), clarifying that M is not invariant over time but depends on the conditions of mortality of 

each period. This work triggered various studies on changes in longevity in various settings 

(Cheung et al. 2005, 2008, 2009; Robine et al. 2006; Cheung and Robine 2007; Gurven and 

Kaplan 2007; Canudas-Romo 2008, 2010; Thatcher et al. 2010; Ouellette and Bourbeau 2011; 

Brown et al. 2012). Horiuchi (2003) used M for interspecies lifespan comparison, as a consistent 

definition of infant mortality for different species is impossible.  

Acsádi and Nemeskéri (1970) considered the mean, median and mode of age distribution of 

deaths in life tables as three major types of lifespan indicators: (1) the average length of life 
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attained by individuals; (2) the probable length of life attained by half the individuals; and (3) the 

so-called normal age at death for most people, disregarding those who died as children. These 

three central tendency measures well reflect their orientation to different aspects of mortality 

(Cheung and Robine 2007; Canudas-Romo 2010). Although the adult modal age at death has 

been used earlier in order to characterize the natural and normal life span (Elderton 1903; 

Gumbel 1937; Greenwood and Irwin 1939; Clarke 1950; Le Bras 1976), life expectancy at birth 

(e0) was considered as the best index of the life span (Dublin 1923). The substantial decline in 

mortality at young ages during the first half of the twentieth century was reflected in the steep 

increase in e0. However, currently, the extension of length of human life in low mortality 

countries is primarily due to improvements in old-age survival. In these circumstances, the 

modal age at death is a useful lifespan indicator as it is solely determined by old-age mortality 

(Horiuchi 2003) and is free from any arbitrary selection of age range for “old ages” (Kannisto 

2001). 

 

3  Trends and differentials in modal age at death 

 

3.1  Differential trends in M, life expectancy at birth and median age at death 

 

Because the age distribution of deaths is typically bimodal and that of adult deaths is highly 

skewed to the left, M is considerably older than the life expectancy at birth (e0), and the median 

age is placed between them (Figure 1). In high-mortality regimes in which e0 was around 40 

years or lower, M was higher than e0 by about 30 years or more (Cheung et al. 2008, Figure 7). In 

high-income countries during the past few decades, values of the three indicators are closer, but 

still noticeable: typically, M is higher than e0 by about 5 years, and the median age is near the 

mid-point between M and e0. 

The change in the differences among the lifespan measures is a result of their differential 

trends, which are shown for French males and females in Figure 2. Similar patterns have 

previously been shown for some other countries and regions such as England and Wales, Finland, 

France, Japan (only since 1950), Sweden and Switzerland (Kannisto 2001; Robine et al. 2006; 

Cheung and Robine 2007; Cheung et al. 2009; Canudas-Romo 2010; Office of National Statistics 

2012). High-income countries witnessed a substantial rise in e0 and median in the last quarter of 

the nineteenth century and the first half of the twentieth century, due to the reduction in mortality 

among infants, children, and young-age and middle-age adults. The rise continued in the second 

half of the twentieth century and recent years, though not as fast as in the earlier phase. On the 

contrary, the trajectory of M was almost flat or only slightly upward in the first half of the 

twentieth century, but M started to increase in the second or third quarter of the century and the 

upward trend continued. During the last few decades, the three upward trajectories, all quite 

linear, appear nearly parallel, suggesting that the gain in e0 was primarily attributable to the 

improvement in old-age mortality. It should be noted, however, that this is a description of the 

typical pattern, and there are some variations in the timing of acceleration/deceleration and 

concavity/convexity of slope among high-income countries, some of which also show sudden 

falls reflecting effects of wars and other disastrous events. 

[Figure 2 about here] 

It should also be noted that when the latest figure of life expectancy is announced, many 

people may take it as the “typical” (i.e., most frequent) length of life. For example, the life 
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expectancy at birth for French females is currently around 85 years. They tend to miss the fact 

that the typical age at death has actually been over 90 years in the period life tables since 2006. 

 

3.2  Comparison of trends in M and conditional life expectancies e55, e65 and e75  

 

Conditional life expectancy, defined as the expectation of life conditional on survival to a certain 

age (i.e., ex for x > 0), is widely used as a summary measure of old-age mortality. If an old age 

such as 65 is adopted as x, then ex is not affected by mortality at young and middle ages, and 

determined by mortality at old ages only. Thus, it may seem reasonable to expect similar trends 

for M and conditional life expectancies such as e65. 

However, data from high-income countries that experienced significant declines in old-age 

mortality actually exhibit noticeably different trends between M and ex’s. Figure 3a compares 

changes in e55, e65 and e75 with those in M for French females from 1920 to 2009. M increased 

more steeply than the conditional life expectancies. In addition, life expectancy at older ages 

tended to increase more slowly. 

[Figure 3 about here] 

In order to understand these different trends, we did a simple simulation of “old-age 

mortality shift”: a mortality curve, which had the same shape as the three-parameter logistic 

curve fitted to Swedish female data for 1973-1977 (Horiuchi and Coale 1990), was assumed to 

shift to older ages at the rate of 1 year of age in four calendar years, i.e., the force of mortality at 

age x and time t (in years) was given by . Figure 3b shows the result of 

this simulation. M increased from age 75 to 90 in 60 calendar years, exactly capturing the pace of 

old-age mortality shift. Increases in e55, e65 and e75 were noticeably slower. Patterns seen in 

Figures 3a and 3b appear fairly comparable, suggesting that differential trends in Figure 3a are 

not just a peculiarity of demographic history in France but reflect some general characteristics of 

M and conditional life expectancies. 

It can be shown that in general, if the mortality curve makes a parallel shift to older ages, M 

increases at the same pace as the shift of mortality curve, but conditional life expectancies 

increase more slowly (Appendix 2). Although mortality curves do not make exact parallel shifts 

in actual populations, past trends of old-age mortality in high-income countries can be 

approximated well as shifts of mortality curves to older ages (Kannisto 1996; Bongaarts 2005; 

Cheung and Robine 2007; Canudas-Romo 2008). Thus, mortality shifts are more accurately 

reflected in M trends than in changes of conditional life expectancies at old ages. 

It should also be noted that changes in conditional life expectancies are highly age-

dependent. As seen in the differential steepness of the three life expectancy curves in Figures 3a 

and 3b, the size of change in the conditional life expectancy varies with the starting age such as 

55, 65 and 75. Such dependency on the selected age range is lacking for the modal age at death, 

as the modal age above 55, that above 65, and that above 75 are all identical in any high-income 

country during any recent period.  

 

3.3  Gender longevity differentials in terms of M, e0 and e65 
 

We now turn to issues in measurement of longevity differentials among populations and 

subpopulations, using gender differences (present subsection) and international differences 

(subsection 3.4) as examples. Differentials in terms of M, e0, and e65 (selected as a widely used 

conditional life expectancy) are compared. 

)1,25.0(),(  txtx 
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[Figure 4 about here] 

Figure 4 shows gender differences (female minus male) in the three length-of-life measures 

for France from 1920 to 2009. For most of the period, the difference in e0 is the largest, followed 

by that in M and then that in e65. The greater differences in e0 than in M were expected, because 

gender differentials in e0 reflect mortality at all ages, whereas gender differences in M are 

determined by old-age mortality only. The smaller differences in e65 than in M were expected as 

well, because e65 seems less sensitive than M to horizontal differences on a mortality plot graph, 

as described in 3.2 and Appendix 2. Male and female mortality curves can be compared on both 

the vertical and horizontal dimensions in a mortality plot graph: although the female mortality 

curve may be considered as being below the male mortality curve (i.e., for a given age, mortality 

for females is lower than mortality for males), the female mortality curve may also be deemed as 

being at the right of the male curve (i.e., for a given mortality level, females reach it at an older 

age than males). 

The three measures of gender longevity difference differ not only in levels (in years) but 

also in trends. The gender difference in e0 continued to increase from 1920 to 1992 in France, 

and decreased thereafter. Such downturns were observed recently for many other high-income 

countries (Glei and Horiuchi 2007). Downturns can be seen for the gender differences in M and 

e65, but the downturn was earlier (in the early 1970s) and more pronounced for M than for e0, and 

the downturn for e65 was fairly recent (around 2000) and modest. As seen in Figure 5, the 

narrowing of gender gap during the last few decades was more evident for M than for e0 and e65. 

Figure 6 shows that the old-age death heap for females and that for males became closer between 

1972 and 2009. It seems that the narrowing distance between the two heaps was reflected more 

clearly in M than in e0 and e65, both of which might have been affected more by changes and 

differences in other aspects of male and female death distribution curves. 

[Figure 5 and Figure 6 about here] 

 

3.4  International longevity differentials in terms of M, e0 and e65  

 

Figure 7a presents trends in the three lifespan measures for French and Japanese females from 

1950 to 2009. At the beginning of the period, the Japanese lagged behind the French in all three 

measures, but by the end of the period, the hierarchy was reversed. However, the timing of the 

French-Japanese reversals in M, e0, and e65 differed. As shown in Figure 7b, the reversal in e0 

preceded that of M and e65. Thus, during the 1975-1985 period, Japan had higher values of e0, but 

France still had higher values of M and e65. This situation appears to be due to a “crossover” from 

lower death rates at younger ages to higher death rates at older ages for Japan compared to 

France in this period. Figure 8 illustrates indeed how the mortality curves for Japan and for 

France changed between 1950 and 2009 (calendar years 1950, 1980, and 2009 were selected for 

illustrative purposes) and it confirms the occurrence and timing of such young-old mortality 

crossover. Prior to the crossover (before 1975), death rates at all ages were higher in Japan than 

in France, and thus Japan had the lowest values of M, e0, and e65. Then, while the young-old 

mortality crossover was taking place (from 1975 to 1985), death rates at ages under 60 in Japan 

fell below those of France, which resulted in Japan recording higher values of e0 (due to this 

measure’s sensitivity to mortality at all ages, including infant, child and young-age adult 

mortality). Given that M and e65 are determined by mortality at old ages only, they remained 

higher in France until 1985. Finally, when death rates at almost all ages in Japan became lower 

than in France (after 1985), Japan recorded the lowest values of M, e0, and e65. 
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[Figure 7 and Figure 8 about here] 

 When comparing male trends in the three length-of-life measures from 1950 onwards for 

France with those for Japan (Figure 9a), another interesting situation emerges: during the 2004-

2009 period, France recorded greater values of M whereas Japan had higher values of both e0 and 

e65 (Figure 9b). As shown in Figure 10, this seems to be linked to a mortality crossover between 

“younger-old” (around age 75) and “older-old” (around age 85) in the final five years of study 

(year 2009 was selected to represent those years). When contrasting the 1985 and 2009 mortality 

curves specifically for each country, the main difference is that mortality at ages 60-90 declined 

much more rapidly in France than in Japan. This eventually led to the above-mentioned 

crossover and to higher recorded values of M (but not e0 nor e65) for males in France than in 

Japan. The M- e65 reversal during the 2004-2009 period seems to be mainly due to the fact that M 

is a measure of the age at which the peak of deaths occurs in the age distribution of deaths (i.e., 

around age 85 for 2004-2009), making it particularly sensitive to mortality changes in the area of 

the death heap, whereas e65 does not have such distinctive characteristic. 

[Figure 9 and Figure 10 about here] 

 It should be noted that the concept of mortality crossover is not unfamiliar to 

demographers - the best documented one being the mortality crossover at older ages between 

black and white populations in the U.S. (Coale and Kisker 1986; Kestenbaum 1992; Preston et al. 

1996; Johnson 2000). However, when comparing two countries such as France and Japan, 

mortality crossovers are seldom examined. The two examples above demonstrate that such 

crossovers can actually produce M-e0 reversals, even M-e65 reversals. 

In sum, the examples given in this section show that trends and differentials in M could be 

noticeably different from those in other lifespan measures such as life expectancy at birth, 

conditional life expectancies, and median age at death. Obviously, differences between patterns 

of M and those of the other two overall lifespan measures (life expectancy at birth and median 

age at death) are due to the fact M is determined by old-age mortality only. Differences between 

M and conditional life expectancies such as e65 seem to be primarily attributable to the fact that M 

is specifically an indicator of location of the old-age death heap, capturing changes in the heap 

location in a population and differences in the heap location among populations, whereas 

conditional life expectancies lack this distinctive characteristic. 

 

 4  Modal age at death in mortality models 

 

It is known that observed age variations in adult mortality exhibit high degrees of mathematical 

regularity, and some mathematical equations fit those empirical variations very well. Those 

equations include the Gompertz, logistic, and Weibull models, all of which can be re-formulated 

using M as the parameter representing the overall adult mortality level, and their Makeham 

variants can also be re-formulated in similar manners (Robine et al. 2006). To our knowledge, 

this special advantage has not been found for the life expectancy or median age at death. 

Conventionally, the force of mortality (or the instantaneous death rate) at age x in the 

Gompertz, logistic and Weibull models are expressed as follows: 

Gompertz:          (1) 

Logistic:         (2) 

Weibull:     .       (3) 

bxaex )(

bx

bx

ega

ae
x

)/(1
)(




baxx )(
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Although these models have different mathematical characteristics, they are based on 

comparable conceptual schemes. Each model has two basic parameters a and b, a summarizing 

the overall level of adult mortality and b indicating the pace of age-related mortality increase, 

although different age trajectories such as exponential, logistic and polynomial increases are 

assumed. The logistic model has a third parameter, g, which is the upper bound of logistic 

growth. Parameters a, b and g are all assumed positive. 

These models can also be expressed using M: 

Gompertz:          (4) 

Logistic:         (5) 

Weibull:     .     (6) 

Derivations of equations 4, 5 and 6 from their conventional forms are given in Appendix 3. In 

addition, M and M-related measures such as µ(M), l(M) (i.e., the life table survival function) and 

d(M) (i.e., the life table death density function) in the Gompertz, logistic, and Weibull models 

can be mathematically expressed, as shown in Appendix 4. 

In each of the three models, the mortality level parameter a was replaced by M. Although 

equations 4, 5 and 6 may appear slightly more complicated than equations 1, 2 and 3, M is more 

clearly interpretable than a. This is illustrated in Figure 11a, in which the Gompertz model was 

fitted to death rates for ages 60 to 90 for French males in 1965 and 2005. Estimated values of a 

are 1.1310
-4

 for 1965 and 2.410
-5

 for 2005 (indicated as asterisks), and estimated values of M 

(derived from the Gompertz parameter values) are 76.4 for 1965 and 84.5 for 2005 (indicated as 

filled circles).  

[Figure 11 about here] 

In the Gompertz model, a is the force of mortality at exact age zero extrapolated from adult 

ages. Thus a is a highly hypothetical quantity and the interpretation of a is not as straightforward 

as that of M. Actual central death rates for age 0 were 0.024779 in 1965 and 0.004129 in 2005, 

considerably higher than the estimated values of a. In addition, estimated values of a are 

extremely small and it is difficult to have an intuitive understanding of those values. On the 

contrary, the meaning of M values is intuitively clear.  

Furthermore, when mortality schedules of two populations are compared, a paradoxical 

result about a could be obtained. Although a is generally considered to be a parameter indicating 

the overall level of mortality, it is possible for a population with higher adult death rates to have 

a lower value of a than the other population, if b is substantially different between the two 

schedules. Figure 11b shows mortality schedules of two hypothetical populations: although 

population Q has higher mortality at old ages and lower M than population P, the value of a for 

population Q is smaller than that for population P. In contrast, a lower value of M almost always 

indicates higher mortality rates at old ages. 

The above argument is applicable to the logistic and Weibull models as well. In the 

conventional form of each of those three models, the mortality level parameter a is obtained by 

extrapolating the age pattern of adult mortality to some “reference age” such as 0 and 1: µ(0) = a 

in the Gompertz model (equation 1), µ(0)=a/{1+(a/g)} ≈ a in the logistic model (equation 2), 

and µ(1) = a in the Weibull model (equation 3). The large distance between adult ages and the 

reference age could produce paradoxical results. 
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For each model, its Makeham variant could be set up by assuming that adult mortality is the 

sum of premature mortality, which is assumed constant over age and denoted by c below, and 

senescent mortality, which is represented by the original model (equations 4, 5 and 6): 

Gompertz-Makeham:         (7) 

Logistic-Makeham:        (8) 

Weibull-Makeham:     .   (9) 

These Makeham variants use the modal age at death from senescent mortality (Ms), which is 

nearly equal to (though slightly higher than) the modal age at death from total mortality (M). For 

example, according to the logistic-Makeham model fitted to mortality data for Swedish women 

aged 55-95 in 1973-1977 (Horiuchi and Coale 1990), M=84.3 and Ms=84.6. This proximity is 

attributable to the fact that at old ages, the estimated level of senescent mortality is considerably 

higher than that of premature mortality. It is estimated from the fitted model that 98 percent of 

(M) is due to senescent mortality, and only 2 percent is due to premature mortality. 

Although all of the above-mentioned models are presented in terms of (x), the model by 

Lexis is formulated with respect to the life table death density function, d(x). As described 

previously, a main feature of the Lexis model is the normal distribution of d(x) above age M: 

     for any  ,  (10) 

where s is the standard deviation of the normal distribution. The Lexis model fits post-M death 

distributions in empirical life tables very well (Cheung and Robine 2007; Cheung et al. 2009). It 

can be shown (Robine et al. 2006) that relationships among s, e(M) (i.e., life expectancy at M) 

and (M) in the Lexis model are numerically specified as 

         (11) 

and      .    (12) 

 

5  Methods for estimating the modal age at death 

 

Although a simple visual inspection of the age distribution of life table deaths is often sufficient 

to roughly locate the modal age area, determining M with greater precision is more challenging 

given the typical flatness and irregular pattern of deaths in this area. Indeed, multiple local 

modes of the death distribution are likely to be found at different adult ages, due to erratic data 

and flatness of the curve in the highest frequency region (Kannisto 2001). Figure 12a shows that 

this flat-topped and irregular pattern around the modal age does not only characterize earlier 

time-periods and that it is found even in relatively large populations such as French females. The 

most intuitive approach for estimating M then would be to smooth the age distribution of life 

table deaths in the modal age area using a statistical model. A perfectly smooth curve around the 

modal age would indeed make it very easy to determine the precise age at which the peak of the 

heap of deaths occurs. Already in 1902, Pearson warned against choosing modal values based on 

a casual inspection of the adult age-at-death distribution and recommended, instead, interpolating 

a curve through the top of ordinates (Pearson 1902). Several parametric models, namely, 
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quadratic, normal (Lexis), Gompertz, logistic, and Siler models, have been used for directly or 

indirectly smoothing the distribution in the highest frequency region of adult deaths and thereby 

estimating M (Kannisto 2000, 2001; Cheung 2003; Horiuchi 2003; Cheung and Robine 2007; 

Gurven and Kaplan 2007; Canudas-Romo 2008, 2010; Cheung et al. 2008, 2009; Thatcher et al.  

2010; Brown et al. 2012). However, these conventional parametric statistical modeling 

techniques have some limitations. They rest on a priori assumptions about the shape of the age 

distribution of deaths or the shape of the mortality curve. Moreover, most of these techniques 

also rest on a priori assumptions about the proper restricted age domain over which the models 

should be applied. Both of these could influence results and diminish the accuracy of estimated 

values of M. 

[Figure 12 about here] 

 Recently, Ouellette and Bourbeau (2011) proposed a flexible nonparametric smoothing 

method based on P-splines for estimating M, which relaxes these assumptions. Instead of 

smoothing the age distribution of life table deaths, this P-spline approach for Poisson death 

counts uses observed deaths counts and population exposures to obtain a smoothed age pattern of 

mortality (i.e., mortality curve), from which the corresponding smoothed age-at-death 

distribution can then be derived (Figure 12b). This method is our preferred one for estimating M 

because in addition to being free from any assumptions about the shape of the death distribution, 

it does not require users to select a proper restricted age domain because the smoothing 

procedure can be systematically applied from age 10
1
 and onwards. It is advisable, nonetheless, 

not to extend the smoothing up to the very last high ages, where deaths are scarce and population 

exposures are small. At these latter ages, the P-spline-smoothed mortality curve may show 

unrealistic behavior due to significant random fluctuations. This would have hardly any effect on 

estimated values of M though, since the modal age is a measure of the location of the heap of 

deaths. Still, we provide a simple rule of thumb that prevents undesirable pattern in the right-

hand tail of the smoothed mortality curve: for each 1-year interval in the age range for smoothing, 

the observed number of deaths should be greater than ten. More specifically, the age range for 

smoothing should span ages 10 to j, where j is the highest age for which Di > 10 for all i  j.
2
 In 

cases where this rule of thumb fails to prevent realistic smoothed mortality behavior at the 

highest ages, the threshold of ten observed deaths could be increased.  

 In the remainder of this section, we first provide a more detailed overview of the P-spline 

smoothing method for estimating M. Then, we discuss how to use the method in the statistical 

programming environment R (R Core Team 2012). 

 Let Di and Ei denote the observed death count and population exposure (i.e., exposure-to-

risk) at age . Assuming that the force of mortality (i.e., mortality curve) is a piecewise constant 

function, or to be more specific, that the force of mortality is constant within each 1-year age 

interval such as  for any x in [i,i+1), then the various Di can be seen as realizations of a 

Poisson distribution with mean Ei  i. 

 Thus, in order to estimate , a Poisson regression model is used such that 

                                                 
1
 Infant and early childhood mortality presents unique features (in particular, a very steep downward slope 

between ages 0 and 1) which this P-spline method cannot cope well with, and that are not of interest for 

estimating M anyway. 
2
 For instance, among French males in 2004, the number of observed deaths at ages 104 thru 109 was 38, 

13, 4, 7, 0, and 0 (Human Mortality Database 2012). In this case, then the last four 1-year age groups (i.e., 

ages 106 thru 109) would be excluded from smoothing. 

i

ix  )(

i
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ln(E(D)) = ln(E) = ln(E) + ln(),    (13) 

where D, E and  respectively correspond to observed death, exposure, and force of mortality 

vectors (each one including all the age-specific information). The unknown parameters of this 

regression model are estimated with a flexible nonparametric approach based on P-splines, 

which combines the concepts of B-splines and penalized likelihood (Eilers and Marx, 1996). The 

main outcome of this is a fitted (i.e., smoothed) log force of mortality, which is described as a 

linear combination of B-splines whose coefficients have been penalized. For a brief introduction 

to P-splines and more details regarding their use in the specific context of mortality analysis, 

please refer to Ouellette and Bourbeau (2011, Appendix). Thus, smoothed forces of mortality 

resulting from the estimation procedure correspond to: 

           exp        ,     (14) 

where  is the B-spline basis matrix and    is the vector of estimated penalized coefficients for 

each B-spline included in . 

 Given the usual correspondence between the force of mortality, survival, and density 

functions, the smoothed density function describing the age-at-death distribution is expressed as: 

                          exp          
 

 
    (15) 

and can be computed using standard numerical integration techniques. Finally, the estimated 

modal age at death is given by             . 

 Note that to estimate M, it is preferable to obtain the smoothed death density function,   , 
directly from the P-spline-smoothed mortality curve,   , (see equation 15), than to smooth the age 

distribution of life table deaths derived from observed age-specific death rates. Indeed, the 

former case skips the process of constructing a period life table, which rests on a number of 

assumptions and often involves estimation procedures and adjustments (Preston et al. 2001, 

Chapter 3). It thus offers a more straightforward framework that remains closer to the observed 

data. 

 Conveniently, the MortalitySmooth package (Camarda 2012a, 2012b) in R features a 

function called “Mort1Dsmooth” that performs smoothing of Poisson death counts with P-

splines over a given range of ages or calendar years.
3
 This function can therefore be used to 

obtain smoothed forces of mortality,   , from observed deaths counts and population exposures 

(see equation 14). The subsequent steps leading to M estimates are not implemented in the 

current version of MortalitySmooth. However, we have included an R routine that covers these 

steps at the end of this article (see Appendix 5).  

 

6  Conclusion 

 

As discussed in this paper, M is a lifespan indicator that is solely determined by old-age 

mortality as far as mortality follows the regular pattern. In the context of common pattern of age 

distribution of deaths, M is considered to represent the location of old-age death heap. Due to 

these unique characteristics of M, patterns of trends and differentials in M and those in other 

                                                 
3
 The package also includes a Mort2Dsmooth function, for those interested in smoothing mortality data 

over ages and years simultaneously. This generalization is particularly useful when dealing with small 

populations, for instance. The ability of the two-dimensional approach to borrow information from both 

neighboring years and ages makes large random fluctuations less likely to distort the smoothed outcome 

(Camarda 2012b). For an analysis of geographical disparities in M using this generalized approach, see 

Ouellette et al. (2012). 

B
B
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major lifespan indicators including the life expectancy at birth, median age at death, and 

conditional life expectancies such as e65 could be noticeably different, as shown in the selected 

examples. In addition, M plays key roles in widely used mortality models such as the Gompertz, 

logistic, and Weibull models as well as their Makeham variants, and M helps to formulate those 

models in more clearly interpretable manners than their conventional formulations. 

When mortality data are erratic due to, for instance, a small number of deaths or some data 

quality problem, it may possibly be difficult to determine M. However, based on recent progress 

in the nonparametric regression methodology, a method has been developed for deriving M from 

the P-spline-smoothed mortality curve based on penalized Poisson likelihood, and it is highly 

effective in estimating M.  

As a summary measure of lifespan that reflects mortality rates at all ages, the life 

expectancy at birth should remain to be a major demographic indicator. However, in the era in 

which the length of human life is extending mainly due to reduction in old-age mortality, it is 

also useful to have an additional lifespan indicator that has special focus on old-age survival. We 

recommend that M should be included in the standard set of demographic indicators and widely 

used in longevity research. 
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Appendix 1  Unimodality of adult death distribution 

  

Consider the life table survival function l(x) and death density function such 

that d(x) ≥ 0 for any age x in [0, ω] and d(x) = 0 for any x > ω. Suppose d(x) is differentiable on 

the open interval (0, ω). If the d(x) function has a local maximum or minimum at age y, then 

      (A.1) 

where  and . This is obtained by differentiating 

 with respect to x, setting x = y, and making use of the fact that the derivative of 

d(x) at y is zero. Thus, the force of mortality, (x), and the life table aging rate, k(x), are identical 

at M, i.e., 

 .     (A.2) 

This equation indicates that as far as adult mortality increases with age monotonically, smoothly 

and gradually, there is only one mode in adult age. In this context, monotonicity means 

 for any adult age, smoothness means differentiability, and a gradual change 

means lack of abrupt change in k(x). This is illustrated in Figure A1, which shows trajectories of 

the (x) and k(x) in old age for French females in 2009. The two curves cross only once in the 

figure, indicating that there is only one local maximum value of d(x) within the age range. For 

the d(x) function to have two or more local maximums and minimums, the two curves need to 

cross multiple times.   

[Figure A1 about here] 

Variations in k(x) are relatively small in human populations, as suggested by the Gompertz 

model, which assumes constancy of k(x) over adult age. Empirically, most smoothed values of 

k(x) in adult age fall in the range between 0.05 and 0.15 in modern human populations, if the 

time unit is year (e.g., Horiuchi and Coale 1990; Horiuchi 1997; Horiuchi and Wilmoth 1998).  

The (x) and k(x) curves do not cross in young adult age or middle age, where (x) is 

considerably lower than 0.05. As (x) increases steeply and k(x) remains fairly stable, the two 

curves eventually cross with each other, making d(x) reach a local maximum. The age at the 

crossing point is likely to be significantly old (around age 90 in the Figure A1), because the force 

of mortality must be in the range of 0.05 to 0.15, which is high (Thatcher et al. 2010). Thus 

equation A.2 suggests that essentially, M is determined solely by the trajectory of old-age 

mortality, because mortality at younger ages is far below the regular range of k(x). 

Once the two curves cross with each other, they are unlikely to cross again, as (x) 

continues to rise further and k(x) remains stable, thereby enlarging the gap between them. 

Mathematically, it is possible for the two curves to cross with each other repeatedly, even if (x) 

continues to increase monotonically. Their crossovers can occur if k(x) raises and falls very 

steeply within an extremely short period of time. However, a (x) pattern with such abrupt 

changes in k(x) cannot be considered as a gradually increasing curve. (In erratic data, the discrete 

k(x) may fluctuate considerably, possibly producing multiple crossovers between (x) and k(x).) 

  

dxxdlxd /)()( 

)()( yky 
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Appendix 2  Changes in the conditional life expectancy at old age in the context of 

mortality shift 

 

Suppose that the mortality schedule above age y at time t0 shifts to higher ages by u years in the 

period between t0 and t:  

  for any x ≥ y .    (A.3) 

Note that in this case, 

  for any x ≥ y     (A.4) 

and M also increases by u, i.e.,  

.
      (A.5)
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    (A.6) 

because  unless mortality between y and y+u is zero. Thus, the 

increase in ey between t0 and t is less than u. 

Equation A.3 also implies that if mortality increases with age, then for any pair of ages y 

and x (y < x), 

   (A.7)

 
so that  

 .    (A.8) 
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Appendix 3  Derivation of M versions of the Gompertz, logistic, and Weibull models 

 

In this appendix, the M versions of the Gompertz, logistic, and Weibull models (equations 4, 5 

and 6) are derived from the corresponding conventional forms (equations 1, 2 and 3, 

respectively). All of the derivations are based on a fundamental relation, equation A.2 in 

Appendix 1: .  

The life table aging rate (LAR) for each model is as follows (Horiuchi and Coale 1990): 

Gompertz:           (A.9) 

Logistic:          (A.10) 

Weibull:     .      (A.11) 

For the Gompertz model, by setting x=M in equations 1 and A.9 and substituting them into 

equation A.2, we get . Substitution of this into equation 1 leads to equation 4. A 

similar derivation works for the logistic model. By setting x=M in equations 2 and A10 and 

substituting them into equation A.2, we obtain  again, which is substituted into 

equation 2, resulting in equation 5. For the Weibull model, by setting x=M in equations 3 and 

A.11 and substituting them into A.2, we have . Substitution of this into equation 3 

leads to equation 6. 
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Appendix 4  M-related measures in mathematical mortality models 

 

Characteristics of M in the Gompertz model were investigated by Pollard and his colleagues 

(Pollard 1991, 1998; Pollard and Valkovics 1992). The work was elaborated further and 

extended to the logistic model and Weibull model (Robine et al. 2006; Canudas-Romo 2008). In 

this appendix, mathematical expressions of M, µ(M), l(M) and d(M) for the Gompertz, logistic, 

and Weibull models are shown in terms of their conventional parameters. l(0) is set to be unity. 

The expressions for l(M) and d(M) should be taken with caution, because they are obtained 

assuming that the age trajectory of mortality throughout the entire lifespan follows the model, 

which actually fits mortality at adult ages only. Thus, if the model fits mortality above age 30, 

the analytical expressions for l(M*) and d(M*), where M*=M-30, should be close to observed 

values of l(M)/l(30) and d(M)/l(30). 

 

A.4.1 Gompertz model 

 

M, µ(M), l(M) and d(M) for the Gompertz model are given by: 

       (A.12) 

      (A.13) 

     (A.14) 

.    (A.15) 

The expression for M (equation A.12) is implied by , which was derived earlier in 

Appendix 3. The expression for µ(M) (equation A.13) comes from equation 4 by setting x=M. 

Derivation of equation A.14 starts with the basic definition of survival function:  

 

.    (A.16) 

Substituting equation 1 into A.16 and making use of , we get 

,   (A.17) 

so that  , which is approximated by e
-1 

because usually a ≪ b. The expression for 

d(M) is obtained simply as a product of l(M) and µ(M). 

 

A.4.2  Logistic model 

 

M, µ(M), l(M) and d(M) for the three-parameter logistic model are expressed as: 

       (A.18) 

     (A.19) 
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   (A.20) 
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Interestingly, the Gompertz and logistic models have similar expressions for M. As in the 

case of the Gompertz model, derivations of M and µ(M) are simple (µ(M) is approximated by b 

because b ≪ g). As for l(M), by substituting equation 2 into A.16 and using , we have 
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     (A.22) 

By setting x=M, we have . Because a/g is very small, 

this is close to . The denominator of the ratio converges to e as b/g approaches 

zero. Because b/g is fairly small, l(M) is expected to be close to e
-1

. Equations A.19 and A.20 

imply that d(M) can be approximated by be
-1

. As the logistic b is usually in the range of 0.10 to 

0.14 in low mortality countries (Thatcher et al. 2010), this suggests that the number of deaths in 

one-year period around M should be 4 to 5% of all adult deaths. 

 

A.4.3 Weibull model 

 

Expressions for M, µ(M), l(M) and d(M) in the Weibull model are shown below: 

     (A.23) 

      (A.24) 

     (A.25) 

.    (A.26) 

Derivations of these equations are similar to those for the Gompertz and logistic models. As 

for l(M), substitution of equation 3 into A.16 and using  results in 

,   (A.27) 

so that , which is slightly higher than  because the value of b in the Weibull 

model is typically in the range of 6 to 10. It is interesting to note that l(M) in each of the three 

models is close to (though slightly larger than) , suggesting that although the overall 

level of adult mortality changes over time substantially, l(M)/l(30) is expected to be fairly 

constant, because usually mortality above age 30 is well approximated by those models. Again, 

d(M) is directly obtained as l(M)  (M).  
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Appendix 5  An R routine for computing M estimates from P-spline-smoothed mortality 

curves 

 

Suppose that the Mort1Dsmooth function of the MortalitySmooth package in R (Camarda 2012a) is 

used to smooth death counts with Poisson P-splines over a given range of ages (see section 5 for 

an overview of the Poisson P-spline approach). This can be done with the following commands: 

R> library("MortalitySmooth") 

R> fit <- Mort1Dsmooth(x=age, y=D, offset=log(E)) 

where age is a vector with the age values for smoothing (e.g., 10, 11, …, 109), and the vectors D 

and E include the observed death counts and population exposures by age. The output of the 

Mort1Dsmooth function is a fit object that contains information about the fitting of the Poisson 

regression model and about the original data. 

 The predict.Mort1Dsmooth function can be used to obtain predictions of the smoothed 

mortality curve over very narrow age intervals (i.e., narrower than the original 1-year intervals), 

in order to come closer to the concept of force of mortality (or instantaneous death rate). For 

instance, if each 1-year interval is subdivided into 1,000 equal parts, then: 

R> delta <- 0.001 

R> age.narrow <- seq(from=min(age), to=max(age), by=delta) 

R> log.mu.hat <- predict(object=fit, newdata=age.narrow) 

R> mu.hat <- exp(log.mu.hat) 

 To compute the smoothed survival function corresponding to the P-spline-smoothed 

mortality curve, mu.hat, the latter must be integrated over age (equation 15). This integral can be 

evaluated using numerical approximation techniques. As long as the age intervals are very 

narrow (e.g., 0.001 as above) and the integrand is a smooth function, basic numerical integration 

methods can be used, such as the left Riemann sum: 

R> l.hat <- exp(-cumsum(mu.hat*delta)) 

 The corresponding smoothed density function, which describes the age-at-death 

distribution, is then readily obtained (equation 15): 

R> d.hat <- mu.hat*l.hat 

 Finally, the estimated value of M is given by the age at which the peak of the heap of 

deaths occurs in the smoothed density function: 

R> M.hat <- age.narrow[which.max(d.hat)] 
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Figure 1: Age distribution of deaths for French females, 1960-1964 

 
Source: Human Mortality Database (2012).  
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Figure 2: The life expectancy at birth (e0), median age at death and adult modal age at 

death (M) for civilian females and males in France, 1920-2009 
(a) Females      (b) Males 

  
Source: Human Mortality Database (2012).  
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Figure 3: The adult modal age at death (M) and total life expectancies at age 55, 65 and 75 

(55+e55, 65+e65, 75+e75) 
(a) For French civilian females, 1920-2009 (b) For a hypothetical population in which 

adult mortality shifts to older ages at the rate 

of one year of age in four calendar years 

 

  
 

Note: To make M, e55, e65, and e75 comparable in the same graph, total life expectancies at age x 

are shown (i.e., x is added to ex). 

Source: Human Mortality Database (2012).  
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Figure 4: Gender difference (female minus male) in the adult modal age at death (M), life 

expectancy at birth (e0), and life expectancy at age 65 (e65) for France, 1920-2009 

 
Source: Human Mortality Database (2012).  
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Figure 5: The adult modal age at death (M), life expectancy at birth (e0), and total life 

expectancy at age 65 (65+ e65) for civilian females and males in France, 1920-2009 

 
Source: Human Mortality Database (2012).  
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Figure 6: Height-adjusted age distribution curves of adult deaths for females and males in 

France, 1972 and 2009 

 
(a) 1972      (b) 2009 

  
Note: The age-at-death distribution curves for period life tables were directly derived from the P-

spline-smoothed mortality curves based on penalized Poisson likelihood. 

 

Source: Human Mortality Database (2012). 
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Figure 7: International trends and differentials in adult modal age at death (M), life 

expectancy at birth (e0), and total life expectancy at age 65 (65+e65), French and Japanese 

females, 1950 to 2009 
 

(a) Trends: France (dashed), Japan (solid) (b) Differentials: France minus Japan 

 

    
 

Source: Human Mortality Database (2012). 
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Figure 8: Age-specific death rates, French (dashed line) and Japanese (solid line) females, 

1950, 1980, and 2009 
 

 
 

Note: Age-specific death rates in this figure were directly taken from life tables available in the 

Human Mortality Database (2012). It should be noted that at older ages, such death rates are 

smoothed based on the Kannisto model of old-age mortality (Thatcher et al. 1998; see also 

Wilmoth et al. (2007) for more details). 

 

Source: Human Mortality Database (2012). 
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Figure 9: International trends and differentials in adult modal age at death (M), life 

expectancy at birth (e0), and total life expectancy at age 65 (65+e65), French and Japanese 

males, 1950 to 2009 
 

(a) Trends: France (dashed), Japan (solid) (b) Differentials: France minus Japan 

 

    
 

Source: Human Mortality Database (2012).    
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Figure 10: Age-specific death rates, French (dashed line) and Japanese (solid line) males, 

1950, 1980, and 2009 
 

 
 

Note: Age-specific death rates in this figure were directly taken from life tables available in the 

Human Mortality Database (2012). It should be noted that at older ages, such death rates are 

smoothed based on the Kannisto model of old-age mortality (Thatcher et al. 1998; see also 

Wilmoth et al. (2007) for more details). 

 

Source: Human Mortality Database (2012).  
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Figure 11: Age-specific death rates (Mx) and corresponding Gompertz models  
(a) For French males, 1965 and 2005   (b) For two hypothetical populations P and Q 

 

  
Note: The Y-coordinates of asterisks indicate values of parameter a in equation 1, and X-

coordinates of filled circles indicate M values estimated using the Gompertz model (equation 

A.12). 

 

Source: Human Mortality Database (2012). 
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Figure 12: Age distribution of life table deaths and corresponding age-at-death distribution 

derived from the P-spline-smoothed mortality curve based on penalized Poisson likelihood, 

French females, selected years 
 

(a) Life table death distribution (b) Smoothed death distribution 

 

    
    
Source: Human Mortality Database (2012). 
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Figure A1: Mortality and life table aging rate (LAR) by age for French females in 2009 

 
Note: The mortality curve was obtained by P-spline smoothing based on penalized Poisson 

likelihood, and the life table aging rate curve was directly derived from the mortality curve. 

 

Source: Human Mortality Database (2012). 

 


