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Introduction 

Older persons constitute the fastest growing sector of the U.S. population. They often have 
several chronic diseases; such multimorbidity merits special attention due to rising costs of medical 
services and long-term care. To address an impending crisis for US policymakers, financial 
planners, and medical services involved in the Medicare program, we need tools better able to 
capture multimorbidity effects. Such tools would allow for more precise predictions of future 
mortality and health trends in the medically complex U.S. elderly population. During recent 
decades, the concept of comorbidity has been changing, with an increasing focus on multimorbidity 
and its effects in epidemiological studies results, health services planning, and clinical care 
(McCormick, Boling, 2005; Valderas et al., 2009; Parekh, Barton, 2010; Boyd et al., 2005, 2010). 

Although numerous indices have been used in health studies, no “gold standard” for 
measuring multimorbidity has been established yet. The most frequently applied, the Charlson 
comorbidity index (CCI) in its original version (developed in 1987,  Charlson et al., 1987) reflects 
the contributions of different diseases to the risk of non-disease-specific death. It became a 
“comorbidity” index in precise meaning of this term (i.e., when one specific disease was selected 
as a main point of interest) later after being used in multiple clinical studies to estimate the risk of 
deaths among patients with the disease of interest. However, since the mid-1980s when the CCI 
was developed, many active screening strategies and new approaches to cancer treatment (e.g., 
for prostate, breast, and cervical cancers) have been introduced. Also, changes in prevention 
strategies and achievement in treatment of cardio- and cerebrovascular diseases have changed 
the role of many diseases as contributors to mortality, especially for the US elderly population. 
When evaluating multimorbidity in this population, the severity of diseases that are common at 
these ages should be taken into account. An overestimation of conditions heavily weighted in CCI 
(such as AIDS which is still more prevalent among young and middle-aged patients than among 
the elderly patients) and underestimation of some highly prevalent conditions (such as heart failure 
and Alzheimer’s disease) should be avoided. Also, existing multimorbidity indices have never been 
validated using the national-scale administrative Medicare-based data. To our best knowledge, 
Medicare-based datasets used in this study are capable of providing more detailed information 
than those used in published studies, to construct a multimorbidity index with higher power to 
predict mortality and other outcomes. Thus, the rationale for this study is the lack of a high-
precision tool for the prediction of health status and mortality of older persons. New opportunities 
opened by the availability of large-scale Medicare-based information are very useful in providing 
the national level data for developing such a tool. 

 
Data and Methods 

Two Medicare-linked datasets, the National Long Term care Survey (NLTCS-Medicare) and 
the Surveillance, Epidemiology and End Results (SEER-Medicare) were used in the analysis. They 
contain information from the Medicare files of service use beginning from 1991. All individuals in 
the SEER-Medicare and NLTCS-Medicare are longitudinally tracked for Medicare Part A and Part 
B service use. The records are available for each institutional (inpatient (INP), outpatient (OTP), 



skilled nursing facility (SNF), hospice (HSP), or home health agency (HHA)) and non-institutional 
(Carrier-Physician-Supplier (CAR) and durable medical equipment (DME) providers) claim types.  

Two of the six NLTCS waves, namely cohorts of 1994 and 1999 were chosen for analysis 
primarily because the high quality Medicare follow-up data are available only since 1991 and the 
complete 5-year follow-up after the NLTCS interview is accessible only for these two waves after 
1991. The NLTCS uses a sample of individuals drawn from the national Medicare enrollment files. 
In total, 34,077 individuals were followed-up for 5 years. So-called “screener weights” released with 

the NLTCS were used in this study to produce the national population estimates. 

The collection of SEER data began in 1973 and currently covers about 26% of the U.S 
population. The SEER-M dataset includes Medicare records for individuals with diagnosed breast 
(the number of patients, n=353,285), colon (n=222,659), lung (n=342,961), prostate (n=448,410) 
cancers and skin melanoma (n=101,123), as well as Medicare records for 5% control. In total, 
Medicare records for 2,154,598 individuals are available in SEER-Medicare. 

In addition, we used the Multiple Cause of Death data to perform a specific analysis, i.e., to 
identify the diseases which appeared in death certificates with high frequency and therefore 
potentially would contribute to the newly constructed multimorbidity index.  

Adjusted Multimorbidity Index 
The Adjusted to the US elderly population MultiMorbidity Index (AMMI) was calculated in 

terms of disease-specific weights, dw , through the sum over all contributed diseases as  

( ) ( )d dd
C t w I t=∑ .                                                                (1) 

The term ( )dI t  indicates the presence of dth condition in the considered individual, i.e., ( ) 1dI t =  if 
the individual has the condition and ( ) 0dI t =  if not. These weights are defined considering the 
effect of individual diseases on mortality rate. To use the AMMI as a characteristic of individual 
health in predictive models we need to evaluate the AMMI at any time of individual follow-up. The 
calculation of the AMMI using administrative data requires certain specifications to clarify: i) how to 
optimally specify the list of contributing diseases, ii) how to individualize disease prevalence ( )dI t  
in any time t  of individual follow-up, and iii) how to calculate disease-specific weights dw .  

 

Results 
Evaluation of AMMI 
The list of the conditions that contributed to the AMMI was identified by incorporating 

information about i) the frequency of diseases appearing in death certificates available in the 
Multiple Cause of death data, ii) the strength of association between the prevalence of specific 
disease/disease clusters and mortality in Medicare based datasets, and iii) diseases that contribute 
to the Charlson comorbidity index and several other comorbidity indices.  

We analyzed data on multiple cause of death occurring at 65+ in 1996-1998. These years 
were chosen because i) 1998 is the last when the ICD-9 coding system was used, and ii) 1996-
1998 are in the middle of the time period we analyze in this paper (1991-2005). First, we 
considered the primary grouping of diseases in the ICD-9 (17 groups) and calculated the 
frequencies of diseases taking into account only underlying causes of death. We found the most 
deaths in our data were due to i) diseases of the circulatory system (390-459): 46.3%, ii) 
neoplasms (140-239): 22.5%, iii) diseases of the respiratory system (460-519): 11.6%, iv) 
endocrine, nutritional and metabolic diseases, and immunity disorders (240-279): 3.69%, and v) 



diseases of the digestive and renal systems (520-579): 3.04%. Second, we analyzed frequencies 
of three-digit codes in underlying cause of death. One unexpected finding is the high frequencies 
for “unspecified disease”. The 6 top (with frequencies above 4%) are: 414–Other forms of chronic 
ischemic heart disease (12.95%), 410–Acute myocardial infarction (9.77%), 162–Malignant 
neoplasm of trachea, bronchus, and lung (6.29%), 436–Acute, but ill-defined, cerebrovascular 
disease (4.93%), 496–Chronic airway obstruction, not elsewhere classified (4.22%), and 486–
Pneumonia, organism unspecified (4.04%).  
Third, we analyzed frequencies of secondary causes for the most important underlying causes of 
death.  

Based on these analyses as well as on Charlson’s original selection plus accounting for the 
changes in disease incidence and mortality structure in the US elderly since the late 1980s, the 
diseases of cardiovascular, cerebrovascular, pulmonary, neurologic, metabolic, renal, 
gastrointestinal, and musculoskeletal systems, as well as cancers, anemia, depression, HIV/AIDS, 
obesity/weight deficiency, and tobacco, alcohol, and prescribed medicine abuses were included in 
the analysis. Table 1 provides ICD-9 codes for selected diseases or disease clusters.  

Even when the list of contributing diseases is fixed, the calculation of the comorbidity and 
AMMIs using the eq. (1) still requires addressing certain issues: i) how to individualize disease 
prevalence ( )dI t  in any time t  of individual follow-up, and ii) how to calculate disease-specific 
weights dw . 

The estimation of individual disease presence from Medicare records requires the 
elaboration of specific criteria indicating that an individual has a disease at any time t  of his/her 
follow-up. For the task of comorbidity evaluation, estimating prevalence of comorbid disease is 
required for time of main diagnosis only. Typically a time period of one year is used for the search 
of ICD codes for comorbid diseases. In the case of multimorbidity, whole after-65-life time 
trajectories for all contributed diseases have to be constructed. Three criteria need to be 
elaborated in order to estimate individualize disease prevalence ( )dI t  at any time t  of individual 
follow-up. First, optimal disease-specific time periods ( dτ ) before the time point of interest ( t ) (how 
long since last visit individual still had the condition) were evaluated. Second, since an individual 
history contains 7 Medicare sources of information, the question is which of them (or maybe all of 
them) should be used in the definition. For example, in the definition of incidence rate calculated 
using Medicare histories four base sources (INP, OTP, CAR, SNF) are used (Akushevich et al., 
2012a,b; 2013a). Third, since each claim in Medicare records can be base or secondary, the 
decision about using secondary cases also has to be made. Specifying these three items results in 
the representation of individual prevalence in the form of the indicator function ( )dI t . The best 
model was identified by the analysis of association with mortality according to the likelihood-ratio 
test and AIC. The analysis showed that the optimal strategy is that all codes (both base and 
secondary) and base Medicare sources (INP, OTP, SNF, and CAR) should be used. Comparison 
of the effects given by all models with different options is the subject of sensitivity analyses. 

As in the majority of approaches for construction of co- and multimorbidity indices, disease-
specific weights iw  were estimated through rounded logarithms of hazard ratios of respective 
conditions on mortality. The Cox proportional model with multivariate time-dependent predictions 
(i.e., disease prevalence) is used to estimate these weights. This computation requires evaluation 
of disease prevalence at all times of individual follow-up, therefore we use different assumptions 
about the Medicare sources, disease-specific times dτ , primary/secondary codes discussed above. 
The best model is identified according to the likelihood-ratio test and/or AIC. The disease specific 
weights for diseases defined in Table 1 estimated using the SEER-Medicare dataset are shown in 
Table 2.  



Using a similar approach we also re-estimated the weights from the original CCI using the 
Medicare data for time period 1991-2005 with the Cox proportional model with multivariate time-
dependent predictions (i.e., disease presence ( )dI t ). Compared with the original CCI, some 
diseases (such as heart failure, myocardial infarction, stroke, respiratory diseases, dementia) had 
higher weights for the current elderly population, while the weights of other diseases (such as renal 
failure, chronic liver diseases, HIV/AIDS, carcinoma in situ, solid cancers with effective screening) 
were lower than in the original CCI which was estimated for the full population in the mid-1980s. 

 
 

Analysis and Modeling Using AMMI and its Validation. 
 
Three steps of the analyses included: i) an empirical analysis of the AMMI and comparison of CCI 
and AMMI, ii) mortality and dynamic model development, and iii) a validation study. 
  
Empirical analysis. Formula (1) is used to evaluate the AMMI for each time point of individual 
follow-up. Figure 1 presents the distributions of the AMMI evaluated for the pooled NLTCS-
Medicare cohort. Means for the various population groups and standard deviations are also 
presented. They show that there is no difference between males and females, the white population 
is healthier than the non-white, and as expected, the mean for advanced ages is much higher then 
for younger adults. Figure 3 shows the dynamics of changes of the AMMI with time. Note, that an 
increase in AMMI with time is observed not only for the NLTCS-Medicare cohorts (expected 
because time dynamics simply reflect aging of cohorts), but also for the SEER-Medicare estimate 
that is designed to reflect estimates in the general population every year.  
 
Then we evaluated empirical plots of the CCI and AMMI. Several basic properties of the index 
were evaluated: i) the age pattern of the index; ii) sex-, race, cohort-, and period-effects, and iii) the 
association between the shape of the AMMI (i.e., slope or curvature) and mortality (see Figure 3). 
When the same analysis was performed for CCI, it showed that CCI, over periods and cohorts, did 
not completely reflect the respective plots for mortality - that was one of the motivations for 
developing the AMMI.  
 
Modeling. There are two specific models have to be developed to predict mortality for a cohort of 
older adults. The first is the mortality model, i.e., the model that predicts mortality in terms of 
current AMMI, history of its measurements, and other covariates. The second is the dynamic model 
for AMMI changes, i.e., the model that predicts future values of AMMI using similar predictors. The 
mortality model was chosen in the form: 
 0 3 0 0 1 3( ( 1 )) ( 70) ( 1930)b Age b blogit Prob death C C Age Y u C C Age Yβ β β β= | , , , = + + + − + −      (2) 

Justification for this model selection is as follows. 0C , the multimorbidity index in the last month, is 
the major predictor of mortality. Its effect is linear that results in exponential relation of mortality and 

0C . The exponential relation is expected because 0C  is constructed by HR evaluating using the 
Cox proportional hazard model. This shape of relation between mortality and the AMMI was also 
confirmed by two separate analyses. The first was based on the model with categorical AMMI. 
Estimates of the effects of different categories were close to linear thus confirming (2). The second 
used individual disease prevalence ( )dI t  as predictors. Estimates of the effects of specific 
diseases were close to estimated weights estimated using the Cox model.  

The second predictor standing in (2), 3C , is the multimorbidity index measured three 



months before the current month. Occurrence of the term reflecting previous values of the index is 
important because it allows for capturing the effect of increasing multimorbidity before death. The 
effect of age is linear corresponding to the gamma-Gompertz model of mortality. The parameter bY  
reflects the cohort effect. The linear form for this effect is justified by preliminary modeling results 
with the categorical cohort index. The estimated pattern was close to linear.  

The Dynamic Model for AMMI was selected in the form  
 

 01 0 1 1 1 13 ( 70) ( 1930)Age b bC C u C Age Yβ β β β∆∆ = − = + + ∆ + − + −                        (3) 

with the same notation as in (2). What is new here is i) the outcome variable: difference between 
AMMIs measured in the current and last months and ii) one of the predictors: difference between 
AMMIs measured in previous months ( 1 3C C C∆ = − ). Similarly to the analysis with mortality models 
we compared parameter estimates with an alternative, more sophisticated, model and found 
consistency in model parameter estimates. The model is known as the proportional-odds model 
and specified as  
 

1 13 1 1 13( ( )) ( 70) ( 1930)C C b k C Age b blogit Prob I k I Age Y u I Age Yβ β β β∆∆ = | ,∆ , , = + + ∆ + − + −     (4) 

Both outcome ( CI∆ ) and main predictor ( 1CI ) are rounded 01∆  and 1C  to integers. The model is 
estimated for each level of CI  separately. Because of multiple levels of the outcome, the model 
has multiple intercepts.  
 
Parameter estimates for models (2) and (3) are given in Table 3. Excellent agreement between 
parameters estimated for both datasets is found. The odds ratio of the current AMMI (i.e., 0C ) is 
1.53 (exponent of the parameter estimates presented in Table 3) per one unit of the index. As 
expected the estimate of the AMMI measured earlier is negative (i.e., odds ratio is lower than one). 
This reflects the effect of increasing multimorbidity before death. The effect of age is at the level 
usually estimated for mortality models (Akushevich et al., 2005, Manton et al., 2008).  There was 
no significant effect of birth cohort found. Parameter estimates of the dynamic model show that the 
tendency in change of AMMI is conserved with time (positive estimate of the effect of the 
“Difference of recent AMMI”, 13∆ ) with deceleration or tendency to leveling-off (negative estimate 
of  “Recent AMMI”, 1C ). The effect of age is positive thus reflecting increased multimorbidity with 
aging. Estimates of birth cohort effects were significant and positive. This means that 
multimorbidity is increased in the population even after controlling by age. These estimates reflect 
our observations in Figure 3 on increased patterns of multimorbidity in the general population. This 
observation can be explained by an increase in diagnoses at earlier stages with time (e.g., due to 
screening strategies and improved diagnostics).  
 
 
Validation. To perform a model validation study we separated the NLTCS pooled cohort into two 
subcohorts of equal size: estimation and validation datasets. The validation procedure included two 
steps. At the first stage we estimated the model using the estimation dataset and then tested how 
well the fitted model predicts mortality outcomes in the validation dataset. This procedure can be 
formalized in terms of ROC curves and the areas under the curves. Figure 4 provides the ROC 
curves and AUC for several models. It shows that the quality of prediction is excellent. The main 
finding in these studies is that although the quality of mortality prediction is reasonably good for 
CCI (the area under curve (AUC) is 0.84, i.e., approximately 84% of the cases of next month 
survival status are predicted correctly), prediction is much better for AMMI (AUC=0.90). Another 



conclusion is that the results are stable with respect to using alternative assumptions for model 
construction. At the second stage we simulated individual trajectories using the fitted model using 
measured initial stage in the validation cohort. As expected the prediction of mortality outcomes in 
the first year is excellent (85-90%) but is not so good for longer time periods such as 5-years (68-
75%). This indicates that incidence and recovery models could be improved.  
 
 
 
Discussion and Conclusion 
 
A new multimorbidity index (AMMI) reflecting recent innovations in prevention and treatment was 
developed for the US older adult population and estimated using information from Medicare data. 
The stages of AMMI development included i) identification of multimorbidity patterns (or disease 
clusters) most often occurring for older adults, ii) estimates of weights of specific diseases/disease 
clusters, and iii) evaluating disease indicators during individual follow-up. A population model for 
predicting all-cause mortality among US older adults in the 2000s based on 
comorbidity/multimorbidity indices was developed and estimated. 

Two Medicare-linked datasets (SEER-Medicare and NLTCS-Medicare) were used in 
analyses. Estimates of empirical patterns and model parameters obtained using both datasets 
were in good agreements.  

We detected an increase in the AMMI over time which originates not only from individual 
aging but also due to a cohort effect. An increase in diagnoses at earlier stages is one explanation 
of the cohort effect.  

Predictive models for mortality and AMMI dynamics were developed and then estimated 
and validated using Medicare data. The models demonstrate excellent capabilities for predicting 
mortality rates. These models can be used for construction of short-term prediction of mortality and 
health of US elderly population and for the analysis of “what-if” scenarios by consideration of 
specific interventions e.g., the strategies of secondary prevention, new therapeutic approaches, 
and projected Medicare policy changes.  

In summary, this new index (AMMI) provides advances in both public health and medical 
expenditures projecting, and allows for deeper insights into mechanisms underlying morbidity and 
survival trends. 
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Table 1. ICD-9-CM codes for disease clusters contributing to AMMI. 
 

System  Disease (ICD-9-CM)   
Circulatory  Hypertension (401-405), MI (410), Other IHD (411, 413, 414), Endo/Pericardium (420-

424), Cardiomyopathy (425, 429, 422), ARR (426, 427), HF (428), Stroke (430-437, 
348), Stroke with complications (438, 342, 344), Atherosclerosis (440, 272), Peripheral 
Vein (451-454, 456, 459), Aneurysm/Arterial Embolism/Thrombosis (441-445, 447, 
557). 

Neoplasms  NonSolid (200-208), Fem. Breast (174), Pancreas (157), Kidney (189), Prostate (185), 
Melanoma (172), Lung (162), Colorectal (153, 154), Other Solid Fast Progressive, 
Other Solid Slow Progressive, MTS (196-198), Other Nonspecified (199, 238, 239). 

Respiratory  COPD (490-496), Pulmonary Heart (415, 416, 514), Pneumonia (480-488), Other 
Lung (510-519).   

Mental  Dementia/Alzheimer (290,294,331.0,331.1,331.2,331.9), Parkinson (332, 331.82), 
Depression (301.12, 300.4,309.0,309.1,296.2,296.3,296.5,298.0,311) Alcohol abuse 
(305.0, 357.5, 425.5, 535.3, 571.0-571.3, 291, 303, 980), Drug/Medicine Abuse (292, 
304.1, 305.4, 305.8, 305.9), Tobacco abuse(989.84, V15.82, 305.1). 

Endocrine  Diabetes (250), Electrolytes (276).   

Digestive/  Chronic Liver (571-573, 0702-0707, 0709), IBD (556, 555, 558, 538), Ulcer (531-534),   

Renal Gastrointestinal hemorrhage/bleeding (578),Renal (580-589, V56, 593).   

Infectious  Septicemia (038), HIV (042).   

Blood  Anemia (286.5, 286.7, 286.9, 280, 281, 283-285, 287, 289, V78).   

Injury  Up./Lo. Limb Fracture (V82.81, V54.13, V13.5, 905.2-905.5, 810-813, 817-821, 823-
825, 827, 828, 733, V54).   

Other  RA (714,725), Senility (797), Low Weight (783.2, 783.7, 799.4, 783.0, 783.3, 783.9, 
260-263).  

 
 



Table 2. Disease Specific Weights: Estimates using SEER-Medicare  
 

Disease  
uniRR   mulRR   Disease  

uniRR   mulRR    
Heart failure  3.23  1.79  COPD  2.24  1.33   
Myocardial infarction  2.85  1.13  Pulmonary Heart  3.56  1.12   
Other IHD  1.75  1.00  Pneumonia  3.08  1.29   
Endo/Pericardium  1.90  0.98  Other Lung Disease  3.33  1.24   
Cardiomyopathy  2.28  1.07  Dementia/Alzheimer’s Dis.  3.11  1.80   
Cardiac arrhythmia  2.01  1.09  Parkinson’s Disease  2.73  1.59   
Hypertension  1.25  0.82  Depression  1.84  1.03   
Cerebrovascular disease (CRVSD)  2.33  1.25  Alcohol abuse  3.67  1.82   
CRVSD with complications  3.11  1.44  Tobacco abuse  2.57  1.24   
Atherosclerosis  1.03  0.76  Drug/Medicine abuse  2.68  1.07   
Diseases of peripheral veins  1.91  0.98  Diabetes  1.93  1.41   
Aneurysm/Embolism/Thrombosis  2.05  1.21  Electrolytes  3.14  1.23   
Leukemias and lymphomas  3.48  1.92  Chronic Liver Disease  2.70  1.20   
Fem. Breast Cancer  1.55  1.13  IBD  1.40  0.82   
Pancreas Cancer  6.98  3.24  Ulcer  1.70  0.86   
Kidney Cancer  2.61  1.20  Gastrointestinal bleeding  2.31  1.04   
Prostate Cancer  1.77  1.26  Renal Disease  3.52  1.55   
Melanoma  1.44  0.94  Septicemia  5.18  1.27   
Lung Cancer  9.18  3.06  HIV/AIDS  8.15  4.48   
Colorectal Cancer  2.60  1.43  Anemia  2.27  1.21   
Solid cancers (fast progression)  3.32  1.60  Up./Lo. Limb Fracture  1.47  1.00   
Solid cancers (slow progression)  1.23  1.03  Rheumatoid arthritis  1.30  0.98   
MTS  8.33  2.90  Senility  2.11  1.11   
Other nonspecified Cancer  1.93  1.05  Weight deficiency  3.05  1.34   

 
 



Table 3. Parameter estimates for mortality and dynamic models given by equations (1) and (2) 

 NLTCS-Medicare  SEER-Medicare 

Parameter  Estimate p-value  Estimate p-value 

Mortality Model      

Intercept  -7.31 <.0001  -7.40 <.0001 
Recent AMMI  0.437 <.0001  0.429 <.0001 
3-month-prior AMMI -0.154 <.0001  -0.163 <.0001 
Age  0.067 <.0001  0.079 <.0001 
Birth Cohort  -0.004 0.37  0.007 0.14 

Dynamic Model      

Intercept  0.067 <.0001  0.061 <.0001 
Recent AMMI  -0.042 <.0001  -0.038 <.0001 
Difference of recent AMMI 0.079 <.0001  0.076 <.0001 
Age  0.0068 <.0001  0.0069 <.0001 
Birth Cohort  0.002 <.0001  0.003 <.0001 
 
 
 



 
 
 
 

 
 

Figure 1. Empirical distributions of AMMI for various population groups calculated for the NLTCS-
Medicare data. 



 

 
Figure 2. Time-dependence of AMMI for the two cohorts of NLTCS-Medicare data (upper plots) 
and for SEER-Medicare population (Lower plots). 
 
 
 
 



 
 
 
 
 

 
 
 
 
 
 

 
Figure 3. Sex specific age-patterns of the AMMI and mortality rate for female cohorts with standard 
errors 

 



 
 

Figure 4. ROC curves and AUC values for several selected models. 
 


