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1. Introduction  
The accurate measurement of past fertility trends has important practical, 
theoretical and policy implications. Assumptions about future fertility in 
population projections are largely influenced by past fertility trends. The 
evaluation of population policies is also to some extent based on the reliable 
measurement of fertility trends. The measurement of the timing and of the speed of 
fertility decline is also central to theories of fertility changes.  

In developing countries - where civil registration systems are deficient - fertility 
trends are often obtained with a few estimates from censuses and surveys (United 
Nations, 2011). Such an approach tends to mask changes that occurred between 
two data points, especially when there are only a few estimates. Fertility trends 
computed in this way may also be largely influenced by varying data quality 
between surveys (Schoumaker, 2010).  

In this paper, I present a method for reconstructing and smoothing long term 
fertility trends by combining birth histories from multiple surveys, using Poisson 
regression and restricted cubic splines. The data used in the paper come from 
World fertility surveys and Demographic and Health Surveys2. In the first part, I 
present the method and I illustrate its application by combining several fertility 
surveys in Colombia. Next, I use simulated birth histories to test the method in 
controlled situations. Finally, I apply the method to several countries, from various 
parts of the world, with varying numbers of surveys and with different data 
quality issues. The reconstructed trends are compared with published trends 
(United Nations Population Division and DHS). 

                                                      
1 Bruno.schoumaker@uclouvain.be,   Centre de  recherche  en démographie  et  sociétés, Université 
catholique de Louvain (Belgium). 
2 Data from any other survey with birth histories (such as some MICS) can also be used.  
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2. Reconstructing fertility trends from birth 
histories – a brief review of approaches 

DHS reports typically publish age-specific fertility rates by 5-year periods before 
the survey that allow reconstructing partial TFRs (sometimes computed in reports). 
Garenne and Joseph (2002) used DHS birth histories to compute births and 
exposure by age groups and calendar years on pooled data from several surveys, 
and estimated total fertility rates over long periods in several countries. They 
smooth TFRs by fitting polynomials on the estimated TFRs. More recently, 
Machiyama (2010) computed partial TFRs from birth histories in several sub-
Saharan African countries, and used Loess techniques to smooth fertility trends. In 
addition, she corrected displacements of recent births by transferring some births 
from one year to the preceding year before computing rates3.  

The approach presented in this paper is a generalization of an approach used by 
the author in previous research (Schoumaker, 2004; Schoumaker 2010; 
Schoumaker, 2013). It uses Poisson regression to reconstruct fertility trends from 
several surveys pooled together. The major difference with Garenne and Joseph 
2002), and Machiyama’s work (2010) is to use a regression framework to 
reconstruct fertility trends. This allows estimating TFRs between 15 and 49 with 
truncated data in a straightforward way (with a few assumptions), whereas other 
authors estimate TFRs between 15-34. Our method also allows smoothing fertility 
trends by including appropriate variables in the regression (e.g. splines), and 
allows testing for changes in speed of fertility decline. Data quality problems can 
also to some extent be corrected including appropriate variables in the regression 
model. Finally, our approach is tested with simulated birth histories. 

3. Method 
The method consists in reconstructing trends in total fertility rates (15-49) with 
Poisson regression, and smoothing trends using restricted cublic splines. It is first 
described with data from a single survey; next, it is presented with several surveys 
that are pooled together.  

3.1. Fertility data from a birth history 

The basic principle can be best illustrated with a Lexis diagram showing the data 
that are obtained from a birth history (figure 1). A typical fertility survey collects 
birth histories among women aged 15-49 at the time of the survey. In this example, 
the survey is conducted on the 31st of December 1994. The corresponding data 

                                                      
3 Other recent research on the reconstruction of fertility trends includes Alkiema et al. (2012).  
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needed to compute fertility rates is shown in Table 1. Data come from the 1995 
DHS in Colombia.  

Using data from the full birth history, it is possible to compute the number of 
births and the total exposure (number of women-years) for each year and each age-
group below the black diagonal4. Computing fertility rates thus necessitates 
producing a table containing for each year and each age group, the number of 
births and the total exposure. Each cell in the following table corresponds to a 
rectangle in the Lexis diagram. As is clear from this table and the Lexis diagram, 
some data are missing because of the truncation. 

Figure 1: Lexis diagram illustrating birth history data. 

 

For the year preceding the survey (1st year, or year 15), births and exposure are 
available for all age groups. In year 9 (7th year before the survey), no data is 
available for the age group 45-49, and the age group 40-44 is only partially covered. 
In the 15th year before the survey (1980), births and exposure are complete for the 
first four age groups (15-19, 20-24, 25-29, 30-34), and a very small part of the 35-39 
age group is observed (9 births, 78 years of exposure). No data is available for age 
groups 40-44 and 45-49.  

Using classical demographic methods, the total fertility rates are obtained by 
computing age-specific fertility rates in each of the seven 5-year age groups, 
summing these age-specific fertility rates5 and multiplying them multiplied by 5. 
For the last year, the TFR can be computed between 15 and 49. As one goes back in 
time, the age range becomes more limited. For instance, the TFR for 1988 can only 
be obtained for women 15-44, and the rate for this last age group will be slightly 

                                                      
4 A stata command (tfr2) was produced by the author 
5 The computation of age-specific fertility rates consist in dividing the number of births in a 
rectangle of the Lexis diagram by the exposure in that rectangle. 
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biased, since no information is available for women aged 44 in 1988. In 1979, the 
TFR can only be computed among women aged 15-34.  

Table 1: Table of births and exposure from a retrospective birth history, Data from 1995 
Colombia DHS 

Period Year before 
survey 

Age-group Births Exposure 
(years) 

15 1st 15-19 181 2099 
15 1st 20-24 326 1937 
15 1st 25-29 286 1822 
15 1st 30-34 151 1578 
15 1st 35-39 61 1385 
15 1st 40-44 26 1192 
15 1st 45-49 2 848 
…     
9 7th 15-19 189 1937 
9 7th 20-24 325 1822 
9 7th 25-29 222 1578 
9 7th 30-34 165 1385 
9 7th 35-39 75 1192 
9 7th 40-44 21 848 

…     
0 15th 15 162 1652 
0 15th 20 261 1417 
0 15th 25 285 1247 
0 15th 30 150 985 
0 15th 35 9 78 

 

When reconstructing TFRs from birth histories, the usual approach consists in 
computing truncated TFRs. For instance, the TFR for the 10 years preceding the 
survey would be computed over the age range 15-39.  

3.2 Reconstruction of TFRs from a single survey with Poisson regression 

The method consists in estimating TFRs by using Poisson regression with age 
groups and years as independent variables (Schoumaker, 2004; Schoumaker, 2013).  
Poisson regression can be used with individual data or grouped data, leading to 
strictly identical results (Powers and Xie, 2000). Because it is computationally less 
intensive, using grouped data allows fitting the models more quickly. For this 
reason, we use grouped data like in Table 16.  

The model we use can be summarized using this equation.  

( ) )()()log(log timegagefeitit ++=μ      [Eq. 1] 

                                                      
6 However, using individual data leads to strictly identical results, and may be more flexible 
in some applications. See Schoumaker (2004) for the presentation of the method with 
individual data. 
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μit is the expected number of births (births column) at each age (i) and each period 
(t), eit is the total exposure at each age and each period (exposure column), f(age) is 
a function of age, and g(time) is a function of the calendar time. The term log(eit) is 
the offset, and has a fixed coefficient equal to one.  

This equation can be reorganized by dividing the number of births by the 
exposure. 

)()()log(log timegagef
e it

it

it +==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

μ      [Eq. 2] 

[ ] [ ])(exp*)(exp timegagefit =λ       [Eq. 3] 

λit is the fertility rate at age i and period t, and is equal to the product of an age 
effect and a time effect. This log-rate model is estimated with Poisson regression 
(Powers and Xie, 2000). 

An assumption made here is that the shape of the age-specific fertility rates is 
constant over time, i.e. that there is no interaction between age effects and time 
effects. In other words, time has a multiplicative effect on fertility rates that is 
similar at all ages. Comparisons with trends in partial TFRs between 15-34 and 
simulations indicate that this assumption does not have a strong influence on 
fertility trends over a relatively short period of time (10-15 years). As discussed 
later, the assumption of a constant age fertility schedule can be relaxed by using 
changing age schedules in the offset. This is what is done when several surveys are 
pooled together.  

The following model illustrates this method for reconstructing fertility over the 15 
years preceding the 1995 DHS in Colombia7. In this example, age is included as a 
set of dummy variables for five-year age groups (Table 2). Calendar time is 
measured by dummy variables to model annual variations in fertility. The model is 
written in the following way. 
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kitkitit TAe δβαμ      [Eq. 4] 

Alternatively, the rate can be expressed with this equation. 

                                                      
7 Although the method can be used to reconstruct fertility trends from a single survey over a 
longer period than 15 years, possible omissions of births in the past and smaller sample 
sizes, as well as the departure from the assumption of constant age fertility schedule lead us 
to limit the period to the last 15 years. 
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α is the constant term, Akit are dummy variables for the 6 age groups from 20-24 to 
45-49, and Thit are 14 dummy variables for the years after the reference year. 

Predicting the fertility rate for a single age group (e.g. age group 25-29) for a 
specific year (e.g. year 5) is straightforward. The dummy variables are equal to 1 
for the specific age group and year (and 0 for the other age groups and years), and 
the rate is just a function of the constant, the regression coefficient for the 25-29 age 
group, and the regression coefficient for the 5th year dummy variable. 

[ ] [ ]52925 exp*exp δβαλ −+=it       [Eq. 6] 

The total fertility rate (15-49) for year t is equal to 5 times the sum of age-specific 
fertility rates, multiplied by the exponential of the regression coefficient of the 
dummy variable for year h.  
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    [Eq. 7] 

Regression coefficients of the Poisson regression are reported in the second column 
of Table 1. From these regression coefficients, age-specific fertility rates for the 
reference year (1) are computed. The fertility rate for a specific age group (column 
4) is equal to the exponential of the sum of the constant of the model and of the 
coefficient of the age group (the sum of the coefficients are log(rates), in column 3). 
The sum of the age-specific fertility rates for all the age groups multiplied by 5 is 
equal to the TFR for the reference year (1st year of the 15 year period, equal to 3.90 
in Table 1).  The TFRs for the following years are obtained by multiplying the TFR 
of the reference year by the exponentials of regression coefficients of the following 
years.  Figure 2 shows the annual variations of the TFRs (same values as in Table 
1), with 95% confidence intervals. Standard errors for the TFR are computed using 
the delta method8. As will be shown later, the trend can be smoothed with 
restricted cubic splines. 

                                                      
8 A Stata command (called tfr2) was prepared by the author for computing TFRs and reconstructing 
fertility trends from a single survey (see Schoumaker, 2013). 
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Table 2: Age specific fertility rates and reconstruction of fertility trends over the fifteen 
calendar years preceding the 1995 DHS survey in Colombia with Poisson regression. 

Independent 
variables 

(1) 

Regression 
coefficients  

(2) 

Log(rates) 
(α+β) 

(3) 

Rates 
exp[α +β] 

(4) 

TFR 
 

(5) 
 Α    

Constant -2.212    
 Β    

15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 

(REF) 
0.669 
0.559 
0.248 
-0.234 
-1.183 
-3.116 

-2.212 
-1.543 
-1.652 
-1.963 
-2.451 
-3.395 
-5.327 

0.110 
0.214 
0.192 
0.140 
0.086 
0.034 
0.005 

 

 δ    
Year 1 
Year 2 
Year 3 
Year 4 
Year 5 
Year 6 
Year 7 
Year 8 
Year 9 
Year 10 
Year 11 
Year 12 
Year 13 
Year 14 
Year 15 

(REF) 
-0.060 
-0.111 
-0.197 
-0.169 
-0.194 
-0.196 
-0.311 
-0.180 
-0.209 
-0.268 
-0.272 
-0.253 
-0.243 
-0.287 

  3.90 
3.67 
3.49 
3.20 
3.29 
3.21 
3.21 
2.86 
3.26 
3.16 
2.98 
2.97 
3.03 
3.06 
2.93 

 

Figure 2: Reconstruction of TFRs (15-49) and 95% confidence intervals over the 15 years 
preceding the survey, Colombia 1995 DHS. 

 

Another equivalent way of estimating the model is to control the age pattern of 
fertility in the offset (controlling both for exposure and age pattern of fertility).  The 
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model is written in the following way, where ait measures the age pattern of 
fertility.  

( ) ∑
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Comparing equation [8] with equation [4], we see that  

( ) γβα −+= ∑
−

−=

4945

2420

.log
k

kitkit Aa
      

[Eq. 9] 

and 

[ ]γ

βα

exp

.exp
4945

2420
⎥
⎦

⎤
⎢
⎣

⎡
+

=
∑
−

−=k
kitk

it

A
a

      
[Eq. 10] 

The numerator of this expression is the fertility rate for the reference year. The 
denominator is the constant of the second model. By constraining the sum of ait 
over the 7 age groups to be equal to 1, ait are proportionate fertility rates. Then  
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[Eq. 12] 

The total fertility rate is computed as: 

[ ] [ ]hhTFR δγ exp*exp*5=
      

[Eq. 13] 

In other words, if the age pattern of fertility is controlled in the offset, the TFR for 
the reference year is the exponential of the constant multiplied by five; the TFR for 
the other years are obtained by multiplying the TFR of the reference year by the 
exponential of dummy variables for the year h. 

In summary, this alternative approach requires first estimating the age-specific 
fertility rates for the reference year and dividing these rates by their sum to obtain 
proportionate age-specific rates. These proportionate rates are then included in the 
offset9, and a new model is estimated. Although controlling the age pattern of 
fertility in the offset has no interest when working with a single survey – and 
                                                      
9 Mutiliplying exposure by the proportionate rate and taking its logarithm. 
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involves running two models leading to identical fertility trends – it proves useful 
when several surveys are pooled together10. The age pattern can be estimated for 
each survey separately, and included in the offset when surveys are pooled 
together in order to relax the assumption of constant age-schedule.  

In the next section, the approach is extended to be used with several birth histories, 
and trends are smoothed with restricted cubic splines. 

3.3 Reconstruction of TFRs from several surveys with Poisson regression 

The method we just described can be applied to a pooled data set of birth 
histories from several surveys. We first illustrate it in the case of Colombia 
with 7 surveys (1976 WFS, 1986 DHS, 1990 DHS, 1995 DHS, 2000 DHS, 2005 
DHS, 2010 DHS)11.  

Before pooling the surveys, fertility was reconstructed over the last 15 years for 
each of the seven surveys separately (Figure 3), in the same way as in section 
3.2. The seven surveys match quite well, and show a downward trend, 
punctuated by slowdowns in the 1970s and 1990s. 

 
Figure 3: Reconstruction of TFRs (15-49) over the 15 years preceding seven surveys, 

Colombia. 

 

The next step consists in pooling the seven data sets, and reconstructing the 
fertility trend using Poisson regression. Pooling the data sets consists in 
preparing a data set similar as in Table 1 for each survey, and appending the 

                                                      
10  It  is also possible  to  include an age pattern  from another  source –  this  is not discussed  in  this 
presentation. 
11 The situation of Colombia is to some extent exceptional, because of the large number of surveys, 
their relatively good quality, and their large sample sizes.  
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seven data sets (seven surveys) to for a single data file. In order to compute 
fertility rates by calendar year, the datasets for each survey are prepared for 
the fifteen calendar years preceding each survey.  

Assuming a constant age pattern of fertility over a 50 year period may lead to 
biased fertility trends. If fertility decreases more quickly among older women, 
this would lead to underestimating the TFR in the past12. The assumption of 
constant age schedule can be relaxed by controlling for the age pattern in the 
offset, and allowing the age pattern to vary over time. In this paper, this is 
done by considering a survey-specific age schedule. For each survey, the 
proportionate age-specific fertility rates are computed (see previous section) 
and included in the offset. The age pattern is considered constant for each 
survey, but variable across surveys. Although this assumption does not strictly 
hold, simulations show it performs well13.  

Figure 4 below illustrates the reconstruction of the TFR in Colombia between 1961 
and 2008 using Poisson regression with (a) a constant age schedule (CAS), and (2) 
survey-wise constant age schedules (SWCAS). Dotted lines represent estimates 
from the 7 separate surveys (as shown on Figure 3). This figure shows that the 
SWCAS approach fits the separate estimates very well. Before the mid 1980s, the 
CAS approach leads to an underestimation of the TFR, due to the more rapid 
fertility decrease at advanced ages. In the following part of this illustration, we use 
the SWCAS approach.  

Figure 4: Reconstruction of TFRs (15-49) between 1961 and 2008 by pooling 7 surveys, 
Colombia. Comparison of Constant age schedule (CAS) and Survey-wise constant Age 

schedule (SWCAS) 

 
                                                      
12 This is because rates above 35 are reconstructed from the model, and are assumed to have 
declined at the same pace as the fertility rates at young ages (the opposite would be true if 
fertility declined more rapidly at younger ages). 
13  Since birth histories from several surveys overlap, the assumption of constant age 
schedule for each survey does not mean the age schedule is constant over time between for 
each period covered by the surveys. 
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3.4. Restricted cubic splines 

Smoothing fertility trends is performed with restricted cubic splines, i.e. piecewise 
polynomial functions constrained to join at predefined years (knots) (Andersen, 
2009). Cubic splines are flexible and allow fitting a large variety of shapes with 
relatively few parameters (Harrell, 2001). To fit restricted cubic splines with K 
knots, K-1 variables (functions of time periods) are created. The construction of 
these variables depends on the number and the location of knots14. The new 
variables are introduced as explanatory variables in the Poisson regression model, 
in place of the dummy variables15. The predicted total fertility rate is also obtained 
for each year using the coefficients of regression. The model is of the same form as 
in [Eq. 1]. The only difference is that g(time) is not modeled as a series of dummy 
variables, but as a linear function of the K-1 variables (RCS) created to fit the 
restricted cubic splines.  

( ) ∑
−

=

+++=
1

1

.)log()log(log
K

h
hithiitit RCSae δγμ      [Eq. 14] 

For instance, when there are five knots, the model is 

( ) ititititiitit RCSRCSRCSRCSae 44332211 ....)log()log(log δδδδγμ ++++++=   

         [Eq. 15] 

The TFR is estimated as: 

[ ] [ ]ititititt RCSRCSRCSRCSTFR 44332211 ....exp*exp*5 δδδδγ +++=   [Eq. 16] 

The number and location of knots have to be defined before adjusting the restricted 
cubic splines. The shape of the smoothing function is not very sensitive to the 
location of the knots (Harrell, 2001; Andersen, 2009; Dupont, 2009), but is more 
sensitive to the number of knots. Figure 5a to 5c compare reconstructed TFRs using 
restricted cubic splines with knots located every 10 years, 5 years and 3 years16. 
Spacing knots by 10 years leads to overlooking some changes in the pace in the 
fertility transition. Locating knots every five years gives a much better fit, and 
                                                      
14 The mkspline command  in Stata  is used to create these variables after defining the number and 
the location of the knots (StataCorp, 2007). 
15 The  rest of  the model  is  similar as  in  the previous  section:  the age pattern  is controlled  in  the 
offset. 
16 The location of knots is done backward, starting from the last knot. The last knot is located (I/2) 
years before the  last year, where I  is the width of the  interval. For  instance, with a 5‐year  interval, 
and the last year in 2008 (mid‐point 2008.5), the last knot is located on 2006. The next to last knot is 
located on 2001, and so on. Different locations of knots were tested, and have a very small impact 
on the shape of the smoothing function. 
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indicates two slowdowns in the fertility transition. Finally, locating knots every 
three years fits the TFR only marginally better. In the rest of this paper, knots are 
located every five years, as a compromise between flexibility and parsimony.  

Figure 5: Adjustement of restricted cubic splines to reconstructed TFRs (15-49) between 1961 
and 2008, Colombia.  

(a) 5 knots (every 10 years) 

 

(b) 10 knots (every 5 years) 

 
(c) 16 knots (every 3 years) 

 
 

3.5. Testing for stalls 

An additional interest of the RCS approach is to allow testing changes in the 
rhythm of fertility transitions, and notably to identify stalls. With our method, 
this can be done by testing if the slope of the RCS is significantly negative. This 
is done by computing marginal effects (the first derivative) of the RCS function, 
as well as their standard errors (Buis, 2009)17. A marginal effect that is not 
significantly negative is interpreted as a stall18.  

                                                      
17 This is done in stata with the user‐written command mfxrcspline (Buis, 2009).  
18  A  one‐tailed  test  is  performed  by  constructing  90%  confidence  intervals  around  the marginal 
effects. If 0 is not included in the 90% confidence interval, the slope is significantly negative with a 
95% confidence.  



13 
 

Figure 6: Marginal effect of RCS and 90% confidence interval, TFRs (15-49) between 1961 
and 2008, Colombia.  

 

Figure 6 shows the marginal effects and their 90% confidence interval for the 
RCS with knots located every five years (corresponding to figure 5b). In the 
first few years, the slope is not significantly negative. The rate of fertility 
decline reaches -1.5% per year around 1970, and the fertility decline slows 
down in the late 1970s. A new acceleration of fertility decline occurs in the 
early 1980s, followed by a deceleration and a stall between 1988 and 1992. 
After 1992, the decline resumes, and fertility currently declines at a rate of 
0.7% per year.  

Figure 7: Reconstructed TFR (15-49) in Colombia (1961-2008), 95% confidence intervals, and 
identification of periods of no significant decline (orange).  

 

Figure 7 summarizes this information by representing years when fertility 
decreases significantly in black, and years when fertility is either stable or 
increasing (stall) in orange (light grey in black and white). The 90% confidence 
interval for the TFRs is also shown on these figures (black smooth lines above 
and below the reconstructed trends)19. 

                                                      
19  The sample design is taken into account using the jackknife method (correcting for 
clustering), and standard errors of TFRs are computed from standard errors of the 
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4. Testing the method with simulations 
Two scenarios of fertility transitions are used to generate birth histories 
through micro-simulation (using SOCSIM)20. These scenarios differ by the 
speed of fertility decline, as well as the changing age pattern of fertility. The 
first scenario is characterized by a more rapid fertility decline at low ages (as in 
Morocco). Mean age at childbearing increases, at least in the first phase of the 
fertility decline. The second scenario represents a situation where fertility 
decreases more quickly at high ages (as in Colombia). Mean age at childbearing 
decreases. 

5 DHS-like samples are selected from these simulated birth histories at 5 year 
intervals (the samples are around 4000 women), and fertility is reconstructed 
over 35 years from these samples using the method described above. 2 periods 
are covered separately (1945-1980 and 1960-1995) for each scenario. The 
reconstructed trends can be compared to the trend of the TFR used as the input 
of the simulation (as well as the TFR computed from the SOCSIM output, i.e. 
birth histories).  

Figure 8 compares smoothed reconstructed fertility (and 95% confidence 
intervals) with reconstructed fertility in each of the 5 ‘surveys’ (for the 4 
scenarios, 1a, 1b, 2a 2b), and compares the smoothed reconstructed fertility 
with the input of the simulation.. Overall, the black line (reconstructed fertility 
trends) is close to the grey line (input of simulation), indicating the method 
based on pooling DHS allows reconstructing the trends with reasonable 
precision. 

                                                                                                                                       

coefficients with the delta method. In the case of Colombia, the sample sizes of the various 
surveys are large, resulting in small standard errors. In most situations, confidence intervals 
are larger 
20 We thank Carl Mason from the University of California for generating simulated birth histories.  
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Figure 8: Reconstructed fertility trends from 5 simulated DHS-like surveys at 5-year 
intervals, and comparison with input of simulations  

(scenario 1a – decreasing mean age at maternity, 1945-1980) 

 
 (scenario 1b – decreasing mean age at maternity, 1960-1995) 
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(scenario 2a – increasing mean age at maternity, 1945-1980) 

 
(scenario 2b – increasing mean age at maternity, 1960-1995) 

 

5. Reconstructed fertility trends in selected 
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Jordan, Colombia and Cameroon) (Figure 9). These six examples show that 
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Figure 9: Reconstructed TFR (15-49) in the Dominican Republic, Indonesia, Jordan, Nepal, 
Colombia and Cameroon, with 95% confidence intervals, and identification of periods of no 

significant decline (orange). 
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Comparison with published fertility trends (Figure 10) show that results may 
differ largely across sources in some countries. Fertility trends inferred from 
estimates of recent fertility (3 years preceding the survey) cover a shorter 
period (red line, survey estimates on Figure 10). Moreover, estimates are lower 
than estimates obtained by pooling birth histories, and sometimes much lower 
(as in Cameroon). The discrepancy between recent estimates and reconstructed 
fertility trends reflect data quality issues for recent estimates. Recent fertility 
tends to be underestimated because of displacements or omissions of births. By 
pooling birth histories, fertility tends to be higher except for the most recent 
estimate (which is probably also underestimated in the pooled analysis).  

Comparisons of reconstructed trends with the United Nations Population 
Division estimates also sometimes show serious discrepancies, as in Jordan or 
Cameroon. Moreover, the trends appear smoother in the UNPD estimates, 
masking some slowdowns and accelerations that are apparent in the 
reconstructed estimates. Whether the reconstructed estimates or the UNPD 
estimates are closer to the true values is difficult to ascertain. The UNPD 
estimates also include other sources of information (other surveys, censuses, 
age structures) that may lead to these differences.  
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Figure 10: Reconstructed TFR (15-49) in the Dominican Republic, Indonesia, Jordan, 
Nepal, Colombia and Cameroon, and comparison with estimates of the United Nations 

Population Division (UNPD), and trends inferred from successive surveys (survey 
estimates) 
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6. Correcting for data quality problems 
The previous analyses mentioned potential data quality issues, for instance in 
Cameroon, but no specific treatment was applied.  In many countries however, 
discrepancies across surveys may be large (Schoumaker, 2010), and 
reconstructing fertility trends from pooled birth histories requires a specific 
treatment. The discrepancies may be due to several factors, including: 

• Differences in sample implementation.  
• Displacements of births 
• Omissions of births 

In this section, I present two examples and discuss possible approaches for 
reconstructing fertility trends with data quality problems. 

6.1 Differences in sample implementation: Morocco 
Figure 11a shows reconstructed fertility trends in Morocco with four surveys 
(the 1980 WFS, the 1987 DHS, the 1992 DHS, and the 2003-2004 DHS). The 
three DHS match relatively well; in contrast, fertility in the first survey (WFS) 
seems to be underestimated. The figure suggests a relatively constant 
difference (about half a child) between the WFS and the DHS, maybe reflecting 
differences in sample implementation.  

A possible approach to reconcile estimates and to reconstruct fertility trends is 
to consider that fertility is underestimated in the first survey, but that the 
trend is correct. This could reflect, for instance, the oversampling of women 
with lower fertility (e.g. educated, urban). Including in the model a dummy 
variable (SV1) equal to one for the WFS survey and 0 for the other surveys, and 
predicting the values of the TFR without taking into account the dummy 
variable provides adjusted estimates.   
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The TFR for year t is predicted with the following equation. 
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Figure 11b shows reconstructed fertility trends by pooling birth histories 
without adjusting for underestimation in the first survey; Figure 11c shows 
adjusted fertility trends. According to the adjusted estimates, fertility was 
above 8 children per woman in Morocco in the late 1960s - early 1970s. This 
approximately one child higher than the level of fertility measured in the WFS, 
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and the level of fertility reported in the UN Population Division estimates 
(Figure 10d).  

Figure 11: Reconstructed TFR (15-49) in Morocco, with 95% confidence intervals with 
different approaches, and comparison with UNPD estimates. 
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and the date of the survey may be omitted (Schoumaker, 2010). Several options 
are possible to treat this problem – but currently none is fully satisfying.  

One option is to remove the years likely to be affected by displacements or 
omissions (for the concerned surveys) from the data set. In this example, cut-off 
years are respectively 1986, 1995, 1999 and 2005 for the 1991, 1998, 2004 and 
2011 DHS. Data from 1984 to 1991 are removed from the first survey; data 
from 1993 to 1998 are removed from the second DHS, etc. (2 years before the 
cut-off year of the health module until the date of the survey). A drawback is 
that fertility is not estimated for the most recent period (last 6-7 years). 
Reconstructed fertility is shown on Figure 11b. It is slightly higher than with 
the standard approach. 

Another option is to include dummy variables for the surveys and years 
affected by displacements and/or omissions, and to predict TFRs without 
including the dummy variables (Schoumaker, 2010). The dummy variables are 
coded in the following way (example for the first DHS, called cmir22fl). 

DB1=1 if (year=1984 OR year=1985) AND surv="cmir22fl"; DB1=0 otherwise 

DA1=1 if (year =1986 OR year=1987) AND surv=="cmir22fl"; DA1=0 otherwise 

OM1=1 if year >=1986 AND surv=="cmir22fl"; OM1=0 otherwise 

The model becomes 
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[Eq. 19] 

The TFR for year t is, as in eq. 18, predicted without including the dummy 
variables. 
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A drawback of this approach is that the recent estimates relying only on data of 
the last survey tend to be very unstable and unreliable. Figure 11d shows that 
recent fertility is much higher with that approach than with the standard 
approach. The true fertility levels probably lies somewhere between these two 
approaches. Further work is needed to reach reasonable estimates of fertility in 
such situations.  
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Figure 12: Reconstructed TFR (15-49) in Cameroon, with 95% confidence intervals with 
different approaches. 

 

7. Conclusion 
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