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EXTENDED ABSTRACT 

Introduction 

Childlessness among US women at age 45 had been rising steadily until very recently, from a low 

of 6% among women born in 1935 to near 17% for women in the 1954 birth cohort.  There are 

indications that the trend may have reversed (Dykstra 2009; Human Fertility Database [HFD] 

2011), with lower childlessness among women born in the late 1950s and early 1960s. Are we at 

a turning point? Will recent increases in period fertility eventually translate into lower 

childlessness among currently-young cohorts? In this article, we present a new forecasting 

method that attempts to answer such questions, and to assess the associated uncertainty. 

 

Childlessness is interesting in part for what it reveals about the forces driving fertility change. 

Theoretical explanations for increases in childless include two important strands. On the one 

hand, the second demographic transition literature emphasizes changes in social pressures and 

norms, which in some sense liberate people from the social obligations of having children. In 

this perspective, increased childlessness represents a closer alignment of desires and behavior, a 

kind of previously unmet demand for child-free life. On the other hand, the literature on work-

family balance (the second shift, the incomplete revolution, etc.) emphasizes that the level of 

childbearing achieved in different societies reflects the degree of compatibility of family and 

work life. In this way of thinking, higher childlessness is a symptom of incompatible institutions 

and expectations. 

 

Childlessness also has important social and individual consequences. Childbearing decisions 

affect educational attainment and labor force participation.  Absence of children may have 

consequences for care received at old age, may result in new forms of social support, and may 

transform the role and functions of traditional kinship and friendship networks.  

 

Forecasting childlessness for cohorts of women that are still in childbearing ages is a major 

challenge for demographers (Morgan and Chen 1992, Sobotka 2004), and all forecasts are of 

course imperfect. In this paper, we propose a Bayesian approach to forecasting age-period-

cohort surfaces of fertility rates, using the Human Fertility Database (HFD 2011) as a source of a 

priori knowledge about patterns and variability.  Our approach takes into account both what is 

happening to each cohort, and secular change between cohorts over time. The Bayesian model 

allows us to complete fertility histories for young cohorts in a way that is consistent with 

historical regularities observed across space and time. Moreover, our method allows improved 

evaluation of uncertainty about future trends in childlessness. 

 

A Bayesian model with priors based on historical first-birth rates  

 

We model childlessness by first considering the Lexis surface of unconditional first-birth rates  
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over 30 integer ages a=15…44 and 43 calendar-year birth cohorts c=1950…1992. Note that these 

are demographic rates of the second kind, because the denominator does not exclude women 

who have had a first birth. For cohort c, the proportion childless at age 45 is 
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Some of the (age,cohort) rates belong to the past and can be estimated very accurately from 

vital statistics, while others lie in the future and must be forecast. For example, from the HFD we 

can estimate that for US women born in 1960, θ30,1960 ≈ .0324 and final childlessness was 

Z1960 ≈ .158.  In contrast, past data provide only a partial picture of first-birth incidence and 

childlessness for US women born in 1985: estimates of first-birth rates for this cohort at young 

ages (15-22) are already available in the HFD, but rates at higher ages – and thus Z1985 – must be 

forecast.  

 

We propose a Bayesian model in which all first-birth rates – both past and future – are unknown 

quantities about which we can express uncertainty. We stack all 1290 (age,cohort) combinations 

of interest into a vector θ, sorted by age within cohort. In loose but intuitive notation the model 

for US women is 
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where  

• Data represents available HFD estimates for the US (age,cohort) cells of interest, such as 

θ30,1960 ≈ .0324 above, stacked into a single vector 

• History represents HFD data for cohorts born (anywhere, US or not) 1900-1949.  

 

The L( ) function is a standard likelihood. It answers the question How likely are the HFD 

estimates if the true rates are θ?, and assigns higher probabilities to rate surfaces that match 

published estimates closely.  

 

The f( ) function encodes prior knowledge gained from surfaces of first-birth rates for pre-1950 

cohorts in the HFD, as described below. It answers the question How likely are different 

contemporary rate surfaces, given the patterns and variability in earlier HFD data?, and assigns 

higher probabilities to sets of rates that better match historical patterns.  

 

Because the posterior distribution on the left is a product of L( ) and f( ), it assigns high 

probabilities to θ surfaces that fit the available data well and have historically plausible patterns 

over age and cohort. The explicit compromise between fitting past estimates and maintaining 

plausible patterns allow us to estimate both the most likely levels of future childlessness for US 

cohorts, and, equally importantly, to estimate our uncertainty about those levels.  

 

We use a normal approximation to the likelihood, specifically 
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where V is a matrix of zeroes and ones such that Vθ is the subset of rates for which there are 

already existing HFD estimates, i indexes that subset, Wi is the number of women from whom 

the HFD rate in cell i was estimated, and Ψ is a diagonal matrix of estimated variances 

Var(Datai)≈ Datai/Wi. This approximation ignores the non-zero covariances between estimated 

rates of the second kind within each cohort, but in practice that subtlety does not matter for our 

estimates. Because HFD data come from national populations and sample sizes Wi are so large, 

any reasonable model of the sampling process yields extremely low likelihoods for proposed 

surfaces θ on which rates in past cells i are not almost identical to published estimates Datai. In 

short, the likelihood portion of the model practically insists that the surface θ must match HFD 

estimates very closely for (age,cohort) cells belonging to the past.  

 

The main novelty in our forecast method is the construction of the prior distribution f( ) from a 

large historical dataset. We only outline the basic ideas in this Extended Abstract, leaving many 

details for the final paper and presentation.   

 

We want to identify patterns in the HFD estimates of the 1900-1949 cohorts (History), for both 

• age schedules within cohorts, and 

• time series at each age 15…44 

 

We deal with these in turn in the next two subsections. 

 

Age Patterns/Cohort Schedule Shapes 

In order to identify age patterns, we first aggregated available HFD first-birth rates for cohorts 

born in any country prior to 1950. Discarding cohorts with incomplete rate data at any age left 

us with 152 complete historical schedules (32 from the 

US, 18 from Bulgaria, 21 from Canada, 16 from the Czech 

Republic, and so on).  We performed a singular value 

decomposition on the 152x30 matrix of schedules to 

derive 3 principal components (illustrated in the adjacent 

graph). Over 95% of the variation in age-specific first-

birth rates can be explained by modeling the historical 

rates as weighted sums of these components, which 

essentially correspond to overall level of first births (solid 

black), postponement to higher ages (solid grey), and 

variance over age (dotted black). 

 

Our prior for the cohort shapes in a contemporary 

surface θ is that they also should be well approximated by the three SVD components, with 

approximation errors that behave similarly to those in the historical HFD.  More specifically, one 

can always decompose rates for each cohort c into a least-squares projection and an error 

vector 
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Our prior is that approximation errors for cohorts in a contemporary surface θ will have an 

approximately normal distribution with mean E(ec)=0 and a covariance matrix Ω = E(ecec′) = 

average outer product of approximation errors in the historical data. Thus, contemporary 
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surfaces are more likely when they mimic cohort patterns and approximation errors in the 

historical HFD. In matrix terms this yields a “shape prior”  
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that penalizes θ surfaces with implausible cohort shapes.  (We use the generalized matrix 

inverse, Ω
+
, because this shape prior is improper and therefore by construction the historical 

HFD estimate of Ω is not full rank – the full paper will have more details.) 

 

 

Time Patterns/Age-Specific Rate Series 

Our second prior is that the time series of rates at each age 15…44 should have smoothness 

properties similar to historical HFD rates. To operationalize this we assume that time series at 

each age a are approximately linear over 10-year periods, such that residuals u in the expression 
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are small and behave like their historical HFD equivalents. The adjacent figure shows some 

examples of this model for historical HFD 

data for Swedish age-specific birth rates 

(this illustration shows births at all 

parities, at maternal ages 25 and 40). 

Local linearity is generally a reasonable 

assumption, but one-cohort ahead 

forecast residuals are notably larger in 

the more volatile time series for 25-year 

olds.  

 

We stack over ages within cohorts to 

produce a vector expression for the OLS 

forecasts of cohort schedules for women 

born between 1960 and 1992: 
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Our prior for time series smoothness is that vectors of approximation errors in this expression 

are normal with mean E(uc)=0 and covariance E(ucuc′)=Γ=average outer product of these 

approximation errors in historical HFD data. . Thus, contemporary surfaces are more likely when 

they mimic time series approximation errors in the historical HFD. In matrix terms this yields a 

“time prior”  

 

COHORT YEAR OF BIRTH

ra
te

0.
00

0.
05

0.
10

0.
15

1850 1900 1950 2000

Age 40

Age 25

RESIDUALS
(rescaled)



Forecasting Cohort Childlessness 5 

c
c

ctime uuconstHistoryf 1

prior

)|(ln −Γ′−= ∑θ  

 

that penalizes θ surfaces with implausible time series patterns.   

 

 

Combining the Shape and Time Priors 

Because shape residuals ec and time series residuals uc are not independent, we developed a 

reweighting procedure that appropriately calibrates the joint distribution. We omit the details in 

this Extended Abstract, but the end result is a 1290x1290 penalty matrix P, and an improper 

prior distribution for the surface that penalizes both implausible cohort shapes and implausible 

time series of rates: 

 

θθθ P′−= constHistoryfcombined
prior
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Posterior Distribution 

With normal priors and a normal likelihood function, the posterior distribution is also normal, 

with quadratic penalties both for lack of fit to the available data and for implausible shapes and 

time series: 
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The mean and variance of this posterior have closed-form matrix solutions, so that 
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Childless in any one cohort c is θγ ccZ ′−= 1 , where γc is a 1290-vector of dummy indicators 

for membership in cohort c, so that its posterior distribution is  

 

( )cpostcpostcc NDataZ γγµγ Σ′′− ,1~|       c=1950…1992 

 

For cohorts that have already reached their 45
th

 birthdays, these posterior distributions are 

extremely precise, because the only uncertainty in first-birth rates comes from sampling 

variance. For example, 

 

( )00000038.var,1575.~|1960 =NDataZ  
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corresponding to a 90% posterior probability interval [.157,.159].  In contrast, for cohorts with 

incomplete histories in the HFD the model produces forecasts whose uncertainty is calibrated to 

historical volatility in cohort schedule shapes and time trends, such as 

 

( )00010108.var,1814.~|1985 =NDataZ  

 

with a 90% probability interval of [.165,.198].  

 

 

Example Forecasts of US Childlessness 

 

We briefly illustrate the output of the forecast model for US cohorts.  The adjacent plot shows 

the time series of forecast final childlessness levels Zc. Solid dots represent cohorts that had 

already reached their 45
th

 birthday at the time of data collection. Dark and light bands illustrate 

50% and 90% posterior probability intervals 

for the estimates, respectively.  

 

One can see from the plot that our model 

suggests very little uncertainty about the 

ultimate levels of childlessness among woman 

born before 1980, even for those who are still 

at childbearing ages. The high precision of 

these pre-1980 estimates arises mainly from 

two sources related directly to our shape and 

time priors: (1) given a cohort schedule of 

first-birth rates through the mid- to late-20s, 

the shape of the remaining schedule is easy to 

predict, and (2) for cohorts nearing the end of 

childbearing, we have recent data on slightly-

older cohorts at the remaining ages, so that 

only short temporal extrapolations of age 

specific rates are necessary to “fill in” the 

remaining schedule.  These are not really new 

insights. However, a Bayesian model allows 

automatic estimation of the associated 

forecast uncertainty, and suggests that for 

women already past the modal age of first 

birth rates that uncertainty is very small.  

 

The forecast model provides age-specific first-birth rates as well as final cohort childlessness.  

The two small figures below use the same graphical conventions as the previous plot, this time 

to illustrate model results for the 1960 and 1985 birth cohorts by age. Downward-sloping curves 

show the proportion childless at each age, and the hump-shaped curves show first-birth rates 

from the forecast Lexis surface.  
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The model produces a rich set of similar results, including rates for other parities, which we will 

also analyze for the final paper and presentation. 
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