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Abstract:  

 

The nexus of age-structure and economic growth has received long-running attention in 

various social science fields of inquiry. Positing that different age cohorts possess 

exogenously- and endogenously-driven levels of productivity, this line of inquiry argues 

that aggregate economic growth is a consequence of changing demographics and aging 

societies. This research leverages these concepts in order to better understand the human 

dynamics of carbon dioxide emissions.  Using a panel model of US state-level data, these 

estimates illustrate that an aging of the working-age population is a positive determinant 

of CO2 emissions. At the same time, the size of industrial employment relative is a 

positive correlate of carbon dioxide emissions.  Cross-product interaction effects contrast 

this picture, where states with younger, more industrialized labor forces possess growing 

volumes of per capita carbon emissions.  This research confirms hypotheses that posit 

greenhouse gas emissions growth to partially be a consequence of changing age-

structures.  
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Research Questions and Methods 

 

With the above discussion of demography, migration, age-structure, and industrial-

economic growth in mind, this research constructs a panel STIRPAT model at the US 

state level with the following hypotheses: 

 

H1.0: Economic base and industrial employment supplant income as the metric of 

affluence (A) for industrially-oriented emissions sectors (industrial, electric power 

generation, and transportation).  Household and personal income account for 

consumption and emissions from a final-demand perspective, failing to account for 

emissions throughout the production chain.  This will be most apparent in export-oriented 

states where a high proportion of CO2 emissions are the result of goods produced for non-

local demand. 

 

H1.1: Total (all-sector) and transport CO2 emissions will be understated using only 

income as the STIRPAT metric of A.  The volume of emissions will be under-predicted 

in export-oriented states by the volume of industrialization as a percent of the total 

economy, and over-predicted in service-oriented or import-reliant states.   

 

H1.2: Income as the metric of affluence represents the most appropriate specification for 

household or residential CO2 emissions. 

 

H2: The relative age-structure of the labor force exerts influence on carbon dioxide 

emissions.  Different age cohorts possess differing levels of capital access, educational 
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attainment, fertility, and other demographic correlates which either leverage or divert 

resources from the aggregate pool of production, and by extension, the propensity to 

generate greenhouse gasses (GHG). 

 

H3.0: Both age-structure and industrial-economic base work in concert with one another 

to produce a complex landscape of age-specific economic activities. These age-economy 

profiles in the past have been investigated under the umbrella of Easterlin, the 

demographic dividend, knowledge spillovers and innovation in economic geography, and 

the (R.) Florida‘s rise of the ‗creative class.‘  In this research, propose that  younger, 

more industrialized cohorts will be correlated with greater carbon emissions borne out by 

the greater levels of productivity hypothesized by the above theories of economic growth. 

 

Critical to this analysis is the idea that common STIRPAT variables are germane to sector 

specific emissions totals; although income is nearly always included in cross-national 

emissions estimates, the effects of income are likely to be unobserved in an analysis of 

industrial emissions at more local levels of analysis.  Roberts [2011], for example, 

illustrates that household income exhibits a negative relationship with CO2 at the county 

level in the southeastern US.  The implication is not that STIRPAT modelers have it 

backwards, but that industrialized places are not located in high income, high 

consumption areas, as the theory suggests.  To suppose it does contravenes long-held 

understandings about the inherently spatial nature of production chains.  The above panel 

model explicitly addresses this shortcoming. 

 



4 

 

This research project is concerned with integrating complementary theories from 

demography and economic geography into a STIRPAT model of carbon dioxide 

emissions.  The premise of this particular research design is that CO2 estimates that 

account for interaction effects between specific demographic components of a population 

and common industrial correlates offer a potential window into emissions profiles that 

‗static‘ STIRPAT estimates do not.  The statistical signal from these interaction effects is 

potentially strong enough that modeling efforts which ignore economically-driven age-

structures will potentially produce biased estimates of the original coefficients.   

 

I estimate the effects of personal/household income, the age-structure of the working-age 

population (ages 15-64), and industrial economic base with a panel model of the 

following form: 

 

Yijt = ai + b1Ait + b2Mit + b3Dit + b3(Mit·Dit) + eijt 

 

where Y is per capita carbon dioxide emissions in state i at in sector j at time t, A is the 

state median income, M is the percent of the state labor force employed in production, D 

is relative cohort size [pampel, brunello], and Mit·Dit is an interaction variable designed to 

test for multiplicative effects hypothesized by scholars to be integral to economic change.  

States i include all US states, less Alaska and Hawaii; time t are years; and sectors are per 

capita emissions classifications defined by the EPA. These sectors include a total, or all-

sectors, volume for per capita emissions. 
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In this research, I do not comprehensively model all relevant theories of economic 

geography and economic demography into the STIRPAT framework of GHG analysis.  

Instead, I isolate two reasonably representative variables of both theoretical backgrounds 

that effectively establish the effect hypothesized to impact carbon emissions.  Both the 

size of industry and the age-structure of the population have been analyzed and shown to 

have positive impacts on emissions at the national level. My aim here is to use prior 

investigations as a starting point for employing metrics that provide greater theoretical 

leverage and a more accurate assessment of the anthropogenic drivers of GHG emissions.  

Using the industrial share of employment and parsing the working-age population into 

cohort units is one straightforward method for which there are many potential 

alternatives. 

 

Data and Variables   

 

This research specifies a three variable panel regression with an additional interaction 

term for forty-eight US states and Washington, DC, for the years 2000-2009.  Alaska and 

Hawaii are excluded from the analysis due to issues that arise in estimating spatial 

models with non-contiguous units.  Although earlier demographic and carbon emissions 

data are available, employment data that provide the basis for the economic base variable 

are unavailable in reliably similar units due to the changeover from SIC to NAICS 

employment classifications.  
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Dependent variable: per capita CO2 emissions.  The dependent variable in this research 

is state-level per capital carbon dioxide emissions.  In addition to the natural log of total 

(all sectors) carbon dioxide emissions per capita, I also estimate each regression model 

using sector-specific data for industrial, electric power, transport, and residential 

emissions.  Hypotheses addressed below illustrate how the expected relationship between 

age-structure, industrial, and economic base variables differ between different sectors of 

emissions. 

 

Income.  Affluence is a first-order variable in IPAT/STIRPAT modeling, as greater 

incomes are hypothesized to lead to greater volumes of consumption, which both directly 

and indirectly lead to greater use of energy and, by extension, GHG emissions.  The 

volume of research that confirms a positive relationship with CO2 and other trace 

atmospheric gasses is substantial and too numerous to reference individually in this 

article. 

 

In these estimates, I represent affluence by median household income (US Census Table 

H-08).  Income as affluence is typically hypothesized to be positively correlated with 

CO2 emissions.   In the demography-economic base STIRPAT model I estimate here, 

however, it is entirely possible that in the event that age-structure and industrialization 

variables are the correct model specification, income will be non-significant or even 

negatively correlated with per capita emissions.  Potentially, this would potentially be 

particularly likely for regression estimates that utilize industrial, electric power 

generation, and transportation emissions as the dependent variables.  Emissions metrics 
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for these sectors are theoretically accounting for economic activity exogenous to the unit 

of analysis—i.e. industrial production driven by state-level exports—and income is 

therefore an inappropriate determinant for the portion of the emissions that are non-local.  

The expected sign for residential emissions is positive and would confirm hypothesis 

H1.2. 

 

Percent Production Employment.   

 

Having an industrial economic base is hypothesized to positively correlate with carbon 

dioxide emissions.  Put broadly, places with greater energy-intensive economic activity 

are expected to have greater volumes of GHG emissions borne out of the processes of 

both production and high volume of vehicle-miles necessary to transport goods produced.  

Several STIRPAT studies have confirmed this positive relationship [cite here….Roberts 

2011].  Although there are many ways to represent the relative magnitude of heavy 

industry as a component of the economy, in this analysis I use the percent employed in 

production (NAICS ―Good Producing‖ 2-digit group 07) for each state i in time t. 

 

Expected hypotheses for percent production employment theoretically are antitheses of 

income—the variable is intended to capture emissions from the production side of 

commodity chains, rather than the consumption side.  The argument that underpins this 

approach is that using only income as a way of representing consumption will fail to 

account for the volume of GHG emissions that are a product of export-driven economic 

activity.  Middle- or low-income states with high levels of industrialization—common in 
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the US southeast and Midwest—will theoretically have per capita emissions overstated in 

a model where income is the only determinant of economic activity.  The hypothesized 

sign for this variable is positive for total, industrial, electric power generation, and 

transport emissions models.  Percent production employment is expected to be non-

significant for residential emissions, since there is no theoretical basis for industrial 

activity to be directly driving higher or lower aggregate emissions in the domestic sphere. 

 

Relative Cohort Size 

 

Prior STIRPAT investigations illustrate the importance of changes in population age-

structure for future carbon emissions scenarios [cite papers here].  These investigations 

largely employ the dependency ratio as the metric of age-structure,  measuring the ratio 

of the working age population (ages 15-64) to that of the non-working age (ages 0-15 and 

65+).  While this metric is excellent for measuring comparing places with aging 

populations, or places that have undergone rapid changes in age-structure over preceding 

decades, it gives little information about the how age-structure effects function within the 

working-age population.  The efficacy of compositional changes in age-structure of the 

working-age population have been debated by economic demographers extensively, and 

offer a potential window into the population dynamics of economic growth. 

 

In order to address this issue, I use relative cohort size (RCS) to measure potential age-

structure effects of the working population on carbon dioxide emissions.  Though 
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Pampel‘s RCS is commonly used for RCS estimates [cite pampel], I employ Brunello‘s 

more ‗balanced‘ ratio [cite brunello], given by the following: 

 

                

                
 

 

Two competing hypotheses are at work. First, is a scenario working populations weighted 

towards younger populations are more productive; younger laborers have fewer 

dependents, lesser status in the place of employment, and are thereby hypothesized to 

have greater productivity borne out of this disadvantageous position in the workforce and 

a dis-incentive towards non-work activities.  Under this scenario, states with younger 

populations would have greater emissions, indicated by a negative coefficient for the 

variable.   

 

The second RCS hypothesis is one of greater capitalization and productivity through an 

aging, wealthier working population. Under this scenario, places with older workers 

receive their hypothesized higher economic intensity from educated, highly-capitalized 

workers driving production rates through the ability to command capital and make large-

scale investments.  Positive secondary effects on emissions are also borne out through 

higher consumption rates made available from higher personal incomes.  A positive 

coefficient for RCS confirms this latter hypothesis. 
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Interaction of RCS and Percent Industrial 

 

The crux of this investigation is that demographic and economic-base metrics work in 

concert with one another to illustrate how complex population and economic geographies 

drive differential carbon dioxide emissions from place to place.  While these ideas have 

been explored by other STIRPAT scholars at different scales [see, citations here], this 

investigation seeks to establish how the product of RCS and industrial employment 

correlate with CO2 emissions though a multiplicative interaction term.   A positive 

coefficient for this term would confirm H3.1, where older, industrialized working 

populations drive carbon emissions, while a negative coefficient supports H3.2, where 

younger laborers in heavy industry and goods-producing occupations are associated with 

increases in emissions. 

 

Estimate Results 

 

Model estimates are presented in Tables 1 through 3.  Per panel data analysis procedures, 

a variety of diagnostic statistical tests were performed on each of the specified models in 

order to mitigate potential bias problems [Millo and Piras 2012, Croissant and Millo 

XXXX, Franzese and Hays 2007].  This involved estimating the models through several 

iterations.  First, I eliminated a pooled OLS approach by applying a Lagrange Multiplier 

test of the Gourieroux, Holly and Monfort method and estimated significant values for all 

regression models.  Second, significant Hausman tests indicated that fixed-effects 

procedures are more appropriate than a random effects model.  This applied for most 
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regressions in the analysis.  Third, the strength of serial correlation in fixed-effects 

models was established via Wooldridge; a significant test for Wooldridge indicates that a 

first-differenced model is the preferable procedure.  Finally, a Wooldridge First 

Difference test delineated whether there were further serial correlation problems in the 

first differenced models themselves.  Serial correlation of first-differenced estimates are 

notably problematic and difficult to deal with, indicating a broader mis-specification 

issue. 

 

Table 4 visually illustrates differences in sign and significance for independent variables 

between each of the models and procedures.  Table 5 shows that there are no substantive 

differences between significant independent variables in terms of sign from model-to-

model.  Generally, positive changes in RCS and greater percent production employment 

are positive determinants of CO2 in US states during the 2000s, while the product of these 

two metrics are significant and negative for most model procedures.  Income was not 

significant for any regression procedure except the basic and spatial interaction panel for 

electric power, a result that makes little substantive sense in light of the non-significance 

of income in all other procedures and dependent variable specifications.    

 

A primary goal of this research was to test whether more specific metrics of economic 

productivity and demography were better able to capture the impacts of human activity 

on carbon dioxide emissions.  The models investigated here utilize the percent of the 

state-level employment base involved production activities as a proxy for the level of 

industrialization.  Theoretically, higher levels of industrial employment should correlate 
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with higher emissions than income alone can account for.  Put differently, in high-export 

states income alone will fail to account for carbon emissions, as emissions created in the 

production process are generated by non-local incomes. This is the obverse case of the 

Netherlands Fallacy, where high-import countries appear ‗greener‘ than they really are 

owing to the tendency of exporting environmental problems [cite NF here]. 

 

Estimates for sector-by-sector and total (all-sectors) CO2 emissions support this 

hypothesis. States with high or growing levels of production employment have greater 

per capital levels of carbon dioxide emissions.  Significant estimates for percent 

production are positive and significant for total, industrial, and transportation emissions 

models.  Percent production was non-significant for electric power for interaction and 

spatial panel models, while also non-significant for residential emissions in the non-

interaction model.  The strength of coefficients for the percent production variables are 

modest—in the industrial models, where the hypothesized effect would be greatest, a ten 

percent increase in production employment as a percent of the overall state economy is 

correlated with ~ 1.3 to 1.5% increase in industrial CO2 emissions.  More modestly, a ten 

percent increase in production employment is correlated with a ~1% increase in 

transportation CO2 emissions, and a ~0.7 - 0.8% increase in total (all-sector) emissions 

per capita.  Importantly, estimates for the spatial panel procedures were substantively 

similar to the estimates in non-spatial models in sign, significance, and magnitude, 

indicating an estimate that is robust when accounting for a variety of factors as biases.   
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Estimates for median personal income contrast with percent production employment, 

remaining largely non-significant for the preponderance of procedures and model 

specifications.   Income is a significant and negative determinant for electric power 

emissions, an estimate that makes little theoretical sense.  Production employment would 

be a more likely (positive) correlate for electric power emissions, but the geography of 

energy production in the US—weighted heavily towards rural, mountain regions suitable 

for both coal extraction and hydroelectric production—indicates that the more likely 

explanation for this negative result is that the regressions are merely capturing the 

positive relationship between population density and income.  That emissions from 

energy production are sharing in this inverse relationship is hardly surprising when the 

largely rural nature of energy services is considered.  I do wish to be perfectly clear, 

however, that the negative coefficient observed here is more like the result of this sub-

national geography of energy production rather than a true inverse relationship with 

carbon emissions observed between states in the US. 

 

Economic geography and economic demography specify an age-structure dependent 

theory of economic development. If these theories are indeed true and observable, it is 

potentially feasible to also observe an increase in carbon dioxide emissions as a result of 

increased levels of productivity.  In the above sections, I highlighted how competing 

theories specified potential origins of increased economic growth.  The regression 

coefficients estimated for relative cohort size (RCS) in this research are consistent with 

the second hypothesis of age-structure, namely state labor forces weighted towards 

growing older working populations have higher levels of carbon dioxide emissions.  This 
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effect is considerably strong for both the total per capita carbon emissions and for 

transportation emissions.  In these dependent variable categories, a ten percent increase in 

the state-level ratio of older workers to younger workers is correlated with an ~ 10.0 – 

17.0% increase in per capita carbon dioxide emissions.  Put another way, aging labor 

force populations go hand-in-hand with increases in CO2 emissions for total and 

transportation sectors.  When spatial effects are accounted for, RCS is also significant, 

positive, and near unit-elastic for industrial emissions as well.  No significant effect is 

observed for electric power or residential emissions in models with spatial and interaction 

effects.   

 

A primary concern of this article was whether the failure to recognize the substantive 

significance of economic base and age-structure interactions would result in bias 

estimates.  Testing for this involved simply including an interaction term that attempted 

to account for a more dynamic relationship at the nexus of age-structure and economic 

base, as hypothesized by social science scholars investigating the ‗creative class‘ 

[Florida], innovation and universities [anselin et al], and other more macro-level 

investigations of changing demographies and economic performance [cite here].  The 

estimates presented here fail to confirm this hypothesis; the addition of the interaction 

term does not substantially change the primary regression coefficients in terms of sign or 

significance.  Changes in magnitude are apparent, per expectations in a regression that 

includes one or more interaction terms. 
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Conclusions 

 

Regression estimates presented in this article paint a consistent picture across different 

procedures and specifications—growth and aging in the American labor-force, as well as 

increasing industrialization, are positive drivers of carbon dioxide emissions at the state-

level for the most recent decade.  Working in conjunction with one another, however 

paints a different story. Cross-product interaction estimates illustrate that industrial 

growth in states with younger labor forces experienced higher growth in carbon 

emissions during the decade of the 2000s.  This estimate indicates that the relationship 

between economic-demographic phenomena and state-level carbon dioxide emission is 

complex.  

 

In this research I have endeavored to analyze the STIRPAT model using frameworks of 

economic growth from geography and demography.  In doing so, I aimed not only to 

illustrate the ways that metrics such as relative cohort size and industrial employment 

drive carbon dioxide emissions both directly and indirectly, but also to open up the 

conversation to metrics beyond the common STIRPAT variables of GDP, median 

income, and other ‗consumption-side‘ variable used to represent affluence.  While these 

have served cross-national analyses very well in prior works, understanding local- and 

sub-national level CO2 emissions requires greater attention to the mechanisms of the 

production chain and economic geographies of labor. Walker‘s dictum that there is often 

a very good deal of within-country variation in terms of labor when compared to 

between-country variation is particularly relevant here [cite Walker]; just as global GHG 
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emissions trends mirror core-periphery rubrics of prior decades, similar sub-national 

geographies of production and demographic change are apparent within many nation-

states. 
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Table 1

Panel Regressions, US States, 2000-2009, per capita CO2 emissions

Dep Var:

log(Income) -0.045 0.071 -0.783 ** 0.086 -0.121

(t-value) -0.987 0.674 -2.958 1.747 -1.757

PctProduction 0.029 *** 0.063 *** 0.034 *** 0.024 *** 0.005

7.965 8.058 3.921 6.926 1.708

RCS 0.378 ** 0.030 0.034 *** 0.570 *** 0.005 ***

3.135 0.076 3.921 5.272 1.708

(intercept) 0.001 -0.004 8.939 ** 0.007 ** -0.030 ***

0.407 -0.598 3.099 2.828 -8.793

Total Sum Sq. 1.007 5.5759 26.887 0.976 2.550

Resid. Sum Sq. 0.863 4.9623 24.761 0.838 2.446

Adj. R-squared 0.142 0.109 0.078 0.140 0.040

F 24.277 18.011 13.910 24.032 6.173

F-sig 0.000 0.000 0.000 0.000 0.000

idiosyncratic share 0.030

individual share 0.970

theta 0.944

Hausman 28.167 14.385 5.993 11.127 33.056

p-value 0.000 0.002 0.112 0.011 0.000

Wooldridge FE 214.937 118.918 12.272 67.063 210.64

p-value 0.000 0.000 0.000 0.000 0.000

Wooldridge 1st Diff 2.410 0.023 3.487 10.741 17.285

p-value 0.121 0.879 0.062 0.001 0.000

GHM-ML 2096.61 2045.15 2039.53 1958.81 2049.9

p-value 0.000 0.000 0.000 0.000 0.000

White's Covariance Matrix Applied (White's SE's)

n=49, T=10, N=490

First-

difference 

model

First-

difference 

model

Random 

Effects 

Model

First-

difference 

model

First-

difference 

model

1 2 3 4 5

ln(Total)

ln 

(Industrial)

ln(Electric 

Power) ln(Trans) ln (Resid't'l)
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Table 2

Panel Regressions, US States, 2000-2009, per capita CO2 emissions

Dep Var:

log(Income) -0.047 0.069 -0.806 -0.038 -0.122

(t-value) -1.018 0.654 -1.630 -0.571 -1.754

PctProduction 0.088 *** 0.152 ** 0.093 0.119 ** 0.065 *

5.157 3.086 0.464 2.964 2.481

RCS 1.207 *** 1.299 1.528 1.706 ** -0.159

4.363 1.390 0.512 2.624 -0.431

RCS*PctProduction -0.055 *** -0.084 -0.052 -0.095 ** -0.056 *

-3.652 -1.911 -0.275 -2.622 -2.313

(intercept) 0.000 -0.007 8.271 0.179 -0.031 ***

-0.157 -0.988 1.281 0.243 -8.687

Total Sum Sq. 1.007 5.576 27.290 1.604 2.550

Resid. Sum Sq. 0.848 4.926 25.067 1.138 2.430

Adj. R-squared 0.156 0.115 0.081 0.287 0.046

F 20.472 14.373 10.752 49.617 5.376

F-sig 0.000 0.000 0.000 0.000 0.000

idiosyncratic share 0.035 0.049

individual share 0.965 0.951

theta 0.940 0.928

Hausman 25.840 39.397 8.810 0.5549 44.107

p-value 0.000 0.000 0.066 0.968 0.000

Wooldridge FE 166.668 88.339 11.816 241.077 199.446

p-value 0.000 0.000 0.001 0.000 0.000

Wooldridge 1st Diff 3.155 0.016 3.220 29.705 18.144

p-value 0.076 0.899 0.073 0.000 0.000

GHM-ML 2055.25 1932.24 1927.41 1855.56 1994.71

p-value 0.000 0.000 0.000 0.000 0.000

White's Covariance Matrix Applied (White's SE's)

n=49, T=10, N=490

First-

difference 

model

First-

difference 

model

Random 

Effects 

Model

Random 

Effects 

Model

First-

difference 

model

1 2 3 4 5

ln(Total)

ln 

(Industrial)

ln(Electric 

Power) ln(Trans) ln (Resid't'l)
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Table 3

Spatial Panel Regressions, US States, 2000-2009, per capita CO2 emissions

DV:

log(Income) -0.089 -0.233 -0.793 ** -0.055 0.039

(t-value) -1.503 -1.605 -3.008 -1.025 0.454

PctProduction 0.076 *** 0.135 *** 0.087 0.106 *** 0.049 **

6.700 4.811 1.689 10.461 3.063

RCS 1.066 *** 0.972 * 1.484 1.493 *** 0.348

6.244 2.309 1.928 9.589 1.381

RCS*PctProduction -0.049 *** -0.060 * -0.047 -0.083 *** -0.011

-4.967 -2.449 -1.038 -9.292 -0.795

(intercept) 2.457 *** 1.272 8.189 ** 0.599 -1.257

3.666 0.777 2.755 0.995 -1.285

phi 102.851 *** 45.325 *** 32.422 *** 24.809 *** 76.519 ***

4.658 4.608 4.624 4.590 4.628

rho 0.159 ** 0.089 0.021 0.264 *** 0.392 ***

3.017 1.587 0.339 5.542 9.047

Hausman 1.305 8.7507 3.844 7.209 4.836

p-value 0.861 0.068 0.428 0.125 0.305

n=49, T=10, N=490

Regression procedure: spatial panel random effects

1 2 3 4 5

ln(Total)

ln 

(Industrial)

ln(Electric 

Power) ln(Trans) ln (Resid't'l)
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