**Population Association of America 2013 Annual meeting** 

# **A Bias Correction Approach** On the Quantum of Fertility: **Using the Slope Information**

## To predict cohort fertility...





### **Some Plain Prediction Methods:**

- 1. Freeze Rates 2. Equal Ratio
- 3. Freeze Adjusted Rates
- $\widehat{C} = C_1 + P_2$  $\widehat{C} = C_1 + (C_1/P_1)P_2$  $\widehat{C} = C_1 + [1 - r(T)]^{-1} P_2$

## What we know so far...

## A satisfactory estimate of cohort fertility depends crucially on an accurate prediction of the future trend of period quantum!

### **Prediction in the many-to-one framework:**





### Data and Experimental Design

The data employed in this study are ASFRs by one-year period and by single-year age group, taken from the Human Fertility Database and the Eurostat Database (last updated in March, 2012):

- > 907 and 326 completed cohorts for non-parity and parity specific data from **27** countries/areas, including Canada, the U.S., and 23 European countries.
- $\succ$  Each cohort is truncated at ages **16-43** to derive 28 predictions.
- > To compare across countries and birth orders, **completed proportion** rather than truncation age is used in analysis.

### One may extract useful information from the BF curve to effectively correct the prediction bias!



# stro

### **Prediction error**

est. CTR – true CFR true CFR – obs. CFR \* 100%

how much of the **unfinished** fertility has not been **correctly** estimated

#### **Mean Absolute Prediction Error**

PF



| <u>1-to-1 c</u>     | orrespond                        | ence                             |
|---------------------|----------------------------------|----------------------------------|
| birth order         | TFR                              | BF                               |
| all<br>1<br>2<br>3+ | 28.75<br>24.34<br>29.43<br>29.04 | 20.32<br>13.07<br>18.65<br>29.88 |

the completed proportion at MAC generally falls between 50% and 75%

## **BF** helps to predict cohort fertility, but the quantum effect may cause a **BIG** bias.

## Can Bias be Corrected?

1st birth, the U.S.

## **Before Correction**

correlation coefficient between **PE** and **FST** 

| Order | 1      | 2      | 3+     | all    |
|-------|--------|--------|--------|--------|
| ing   |        |        |        |        |
| ild   | -0.427 | -0.577 | -0.779 | -0.601 |
| lium  | -0.497 | -0.701 | -0.861 | -0.743 |
| ong   | -0.471 | -0.748 | -0.881 | -0.810 |

### **Useful Variables:**

- **FST:** the BF slope at the truncation age FST2=FST\*\*2
- > SND: the difference of FST at truncation SND2=SND\*\*2
- > **TAGE:** the truncation age TFST, TFST2, TSND, TSND2
- > STRONG: an indicator if FST\*SND>0 SFST, SFST2, SSND, SSND2
- > POSITIVE: an indicator if FST>0 PFST, PFST2, PSND, PSND2



|                 |         |           | _       |          |         |      |         |    |
|-----------------|---------|-----------|---------|----------|---------|------|---------|----|
| Mo              | del     | Set       | tting   | <b>8</b> | Perf    | orr  | nano    |    |
|                 | model 1 |           | model 2 |          | model 3 |      | model 4 |    |
| Intercept       | V       | ***       | V       |          | V       |      | V       |    |
| FST             | V       | ***       | V       |          | V       | ***  | V       |    |
| FST2            | V       | ***       | V       | ***      |         |      | V       |    |
| SND             |         |           |         |          | V       | ***  | V       |    |
| SND2            |         |           |         |          |         |      | V       |    |
| TAGE            |         |           | V       | ***      | V       | ***  | V       |    |
| TFST            |         |           | V       | ***      | V       | ***  | V       |    |
| TFST2           |         |           | V       | ***      |         |      | V       |    |
| TSND            |         |           |         |          | V       | ***  | V       |    |
| TSND2           |         |           |         |          |         |      | V       |    |
| STRONG          |         |           | V       | *        | V       |      | V       |    |
| SFST            |         |           | V       | ***      | V       | ***  | V       |    |
| SFST2           |         |           | V       | ***      |         |      | V       |    |
| SSND            |         |           |         |          | V       | ***  | V       |    |
| SSND2           |         |           |         |          |         |      | V       |    |
| POSITIVE        |         |           | V       | ***      | V       | ***  | V       |    |
| PFST            |         |           | V       | ***      | V       | ***  | V       |    |
| PFST2           |         |           | V       | ***      |         |      | V       |    |
| PSND            |         |           |         |          | V       | **   | V       |    |
| PSND2           |         |           |         |          |         |      | V       |    |
| <b>R-square</b> | 0.79    | 7959 0.83 |         | 43 0.908 |         | 0.91 |         | 47 |





Bias can be corrected, but note that strong smoothing may encounter an end-point problem, which needs some further refinement.

# P. C. Roger Cheng National Central University, Taiwan

Email: paochih@mgt.ncu.edu.tw