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Abstract

In this paper, we explore the use of Bayesian methods for projecting the United

Kingdom’s age- and sex-specific population. We first argue that a Bayesian ap-

proach is a natural framework for incorporating various forms of uncertainty in

probabilistic projections. Second, we demonstrate the consequences of choos-

ing different Lee-Carter type models for fertility, mortality, immigration and

emigration in terms of forecasted age patterns and their associated measures

of uncertainty. Third, we incorporate these forecasts into a cohort component

projection model and compare the results. We end the paper by discussing the

merits and flexibility of a Bayesian cohort component projection model and

highlight some areas where this work could be extended.

Key words: population projections, Lee-Carter model, uncertainty, United

Kingdom, Bayesian

1 INTRODUCTION

In this paper, we explore the use of Bayesian methods for cohort component popu-

lation projections. The main motivation is the need to incorporate uncertainty into

population estimates and projections. Since the 1990s, there has been an increasing
∗Contact email at A.Wisniowski@soton.ac.uk
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need to move away from deterministic and variant-style projections to probabilistic

projections. Probabilistic projections have the advantage over variant style pro-

jections in that they specify the chances or probability that a particular future

population value will be within any given range (Alho and Spencer 1985, 2005;

Keilmain 1990; Ahlburg and Land 1992; Lee and Tuljapurkar 1994; Lutz 1996; Bon-

gaarts and Bulatao 2000; De Beer 2000). With variant projections, on the other

hand, the user has no idea how likely they are, only that they are plausible scenarios

representing the ‘most likely’ and the ‘extreme’ high and low possibilities. Despite

the advantages of probabilistic projections, they have yet to be widely adopted by

statistical agencies for several reasons (Lutz and Goldstein 2004). First, there are

many types of uncertainties to consider, and including them in projections is not

always straightforward, and it can be misleading to include them incorrectly. Sec-

ond, national statistical offices are often constrained in terms of what methodology

they can use for official purposes. Finally, while much has been done, there is still

a lot of work needed to produce probabilistic models that are usable at a detailed

demographic level, and that are capable of incorporating knowledge of demographic

experts.

The rationale for considering a Bayesian approach is that it offers a natural

framework to project future populations with uncertainty measures. First, variability

in the data and uncertainties in the parameters and model choice can be explicitly

included using probability distributions. Second, the approach allows the inclusion

of expert judgements, including their uncertainty, into the model framework. Third,

the predictive distributions follow directly from the probabilistic model applied. As a

result, probabilistic population forecasts, with more reliable and coherent estimates

of predictive distributions, can be obtained from a particular projection model.

Demographic events, such as fertility, mortality and migration, tend to exhibit

strong regularities in their age patterns. Modelling these age profiles over time per-

mits a relatively concise representation of the history of demographic patterns. These

time series can be utilised to allow past trends to be extended to forecast their future

behaviour. In this paper, we focus on exploring the consequences of choosing dif-

ferent specifications of age-specific fertility, mortality, immigration and emigration

in a cohort projection model in terms of its forecasted populations and measures of
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uncertainty. For illustration, we use a time series of data from the United Kingdom,

consisting of age-specific rates for single years of age going back in time to 1975

for all four components of demographic change. Throughout this paper, we use the

term ‘forecast’ to refer to an outcome of a probabilistic exercise in predictions, as

opposed to purely deterministic ‘projection’ (see, e.g., Keilman 1990).

In the next section of the paper, we provide a general background to forecasting

populations, highlighting the issues pertaining to the stochastic modelling of fer-

tility, mortality and migration by age and sex. The data for the United Kingdom

(UK) used in this paper to illustrate our approach are described in Section 3. In

Section 4, we investigate various ways of specifying Lee-Carter (1992) type models

for age-specific fertility, mortality and migration within the Bayesian paradigm. The

selected models are then incorporated into the growth matrix of a cohort component

projection model. In Section 5, the forecasted populations, with associated measures

of uncertainty, are presented and compared, and the merits of the various specifica-

tions for including demographic components are evaluated. Finally, in Section 6 the

paper is concluded by a general discussion and an outline of further work.

2 BACKGROUND

Concurrent work in Bayesian estimation and projection of populations have been

undertaken by Wheldon et al. (forthcoming) and Bryant and Graham (2011; per-

sonal communication). Wheldon et al. aim at reconstructing the past population

data. Their approach is based on modelling the three population components: fer-

tility, mortality and net migration, as well as account for the varying quality of the

population figures available from the censuses. Census data are treated as biased

estimates of the true unknown population count. Their approach does not provide a

systematic modelling of the age profiles nor do they account for changing behaviours

over time. The information about the model parameters is fed into the model in the

form of the informative prior distributions. The dynamics in the population are mod-

elled only in the cohort-component model, similar to the one described in Section

4.4 below.

The approach undertaken by Bryant and Graham (2011) envisages a framework
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for estimating population accounts and projections of the future populations dis-

aggregated by regions, age, sex and time. It combines various data sources which

include, among others, vital events registers, censuses, school and electoral rolls.

The method relies on the population accounting equation, rather than on the model

based on rates, as it is in the model of Wheldon et al. (forthcoming) and the model

presented in this paper below. The advantage of the model proposed by Bryant and

Graham (2011) consists in combining various data sources into a coherent frame-

work and constraining the true values of population components by the accounting

equation. On the other hand, the latter constraint is adding additional complexity to

the analysis and computational burden, which can be bypassed by using the rate ap-

proach. Also, in the current version age, time, sex and regional patterns are modelled

by means of age, time, sex and regional effects and interactions between them (sim-

ilarly to, e.g., Smith et al. 2010 or Raymer et al. 2011b), within the Poisson-gamma

model.

3 DATA

The data underlying our forecasts concern the period 1975-2009. For the forecasting

exercise we require data on mortality, fertility, emigration and immigration, disag-

gregated by age and sex. The data on mortality rates were obtained from the Human

Mortality Database (2012). The rates are based on the death counts that originally

come from the Office for National Statistics, and exposure-to-risk population, which

are Human Mortality Database estimates. The emigration and immigration counts,

were obtained directly from the Office for National Statistics. The data on births

have been obtained from the Office for National Statistics for England and Wales, as

well as from the Northern Ireland Statistics Research Agency and National Records

of Scotland. All data are disaggregated by sex and single year of age. The UK

mid-year population estimate for 2009, used as a baseline for predictions has been

obtained from the Office for National Statistics and Eurostat.

Logarithms of single year mortality rates for females and males from 1975 to

2009 are presented in the upper row of Figure 1. As would be expected, we observe

that (i) mortality at all ages, and for both sexes, have been decreasing over time, (ii)
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females have lower mortality than males and (iii) males exhibit considerably higher

mortality in the young adult years.
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Figure 1: Logarithm of mortality rates and fertility rates in the UK, 1975 to 2009
(black)

Fertility rates by age are presented in bottom row of Figure 1. Over time, we

observe a shift from a peak level of fertility in ages 23-26 in 1970 towards one in ages

29-33 years in 2009. The reasons for this shift are related to fertility postponement

and a subsequent recuperation. Due to the relatively small counts for very young

as well very old ages, the data on births were aggregated into age groups ‘under 15

years’ and ‘45+ years’. To compute fertility rates, the same female population-at-risk

that was used to calculate the age-specific mortality has been applied, except for

the age groups ‘under 15’ and ‘45+’, where the population-at-risk was aggregated

for ages 12-14 years and 45-50 years, respectively.
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The total flows of immigration and emigration from 1975 to 2009 are presented in

the top row of Figure 2. We observe similar trends in male and female migration over

time. The immigration, the levels have been rapidly increasing since the 1990s up

until around 2005. For emigration, the increase is less noticeable and there appears

to be more volatility, which may be caused by random sample variation in the

International Passenger Survey (IPS). Larger irregularities appear when the data are

disaggregated single year age groups, as illustrated for immigration and emigration

in the middle and bottom rows, respectively, of Figure 2 (see also Raymer et al.,

2011).
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Figure 2: Total levels (tow row) and age profiles of immigration (middle row) and
emigration (bottom row) by sex for the United Kingdom, 1975 to 2009 (black)
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4 METHODOLOGY

4.1 Forecasting mortality

To forecast the mortality of males M and females F , we consider two models.

The first model, denoted by M1, is an extension of the Lee-Carter (1992) ap-

proach for age-specific deaths Dx,t and population exposed to risk of death Rx,t,

with an assumption that deaths follow a Poisson distribution with mean being the

exposure-to-risk Rx,t times death rate µx,t (Czado et al. 2005). The death rate is

log-normally distributed with mean defined as in the original Lee-Carter model, and

precision τ . Hence,

Dk
x,t ∼ Poisson(Rk

x,tµ
k
x,t), (1)

log µkx,t ∼ N
(
αkx + βkxκ

k
t , τ

k
)
,

where the additional superscript k ∈ {F,M} denotes females or males. Throughout

of this paper, we denote by N (µ, τ) a normal distribution with mean µ and precision

(inverse variance) τ . The log-normal error term in the equation for mortality rate

captures any overdispersion which cannot be explained by the error resulting from

the Poisson sampling of deaths. The time-specific parameters κkt for both sexes follow

a bivariate VAR(1) process with drift:

 κFt

κMt

 ∼MVN 2

 φ01

φ02

+

 φ11 φ12

φ21 φ22

 κFt−1

κMt−1

 ,Σ

 , (2)

where Σ denotes a precision matrix.

In comparison with M1, model M2 includes an additional cohort parameter γt−x

(see Renshaw and Haberman, 2006) in the equation for the logarithm of the death

rate, that is

Dk
x,t ∼ Poisson(Rk

x,tµ
k
x,t) (3)

log µkx,t ∼ N
(
αkx + βkxκ

k
t + γkt−x, τ

k
)
.

The model for time-specific parameters κkt is specified as in Equation (2). The cohort
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effect γkt−x, for each sex k, follows a univariate autoregressive process AR(1):

γkt−x ∼ N
(
ψk0 + ψk1γ

k
t−x−1, τ

k
γ

)
. (4)

To ensure identification of the parameters αkx, βkx , κkt in M1 and M2, as well as

γkt−x in M2, we impose the following constraints:

90+∑
x=0

βkx = 1, κk0 = 0, γk0 = 0. (5)

Since the models are analysed within the Bayesian framework, we need to specify

the prior distributions for the model parameters. Thus, for both k we assume

αkx ∼ N (0, τ kα), βkx ∼ N (0, τ kβ ), for all x, (6)

τ kα ∼ Γ(2.1, 2.1), τ kβ ∼ Γ(2.1, 2.1),

φij ∼ N (0, 1), ψki ∼ N (0, 1), i = 0, 1, 2, j = 1, 2,

τ k ∼ Γ(0.1, 0.1), τ kγ ∼ Γ(0.1, 0.1),

Σ ∼Wishart

 2 0

0 2

 , 2

 .
These prior distributions imply weak information a priori about the model parame-

ters. Hence, they allow the data to ‘speak for themselves’. In the specification of the

prior distributions for the age-specific parameters αx and βx, as well as the choice

of the hyper-parameters for the precisions τα and τβ, we follow the suggestions of

Czado et al. (2005). However, rather than employing the hyper-parameters based on

the data (i.e. the empirical Bayes approach), we use the gamma density, Γ(2.1, 2.1),

which implies the expected value of precision is one and the standard deviation

around 0.7. This allows the estimation algorithm to ‘explore’ the appropriate re-

gion of possible values of the parameter, and also improves the convergence of the

algorithm.
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4.2 Forecasting fertility

For forecasting age-specific fertility rates, we apply models similar to those for

mortality. Here, the age-specific births Bx,t are assumed to come from the Pois-

son distribution with mean being the fertility rate νx,t multiplied by the exposure

RF
x,t, the same as in the model for mortality. As before, we consider a direct extension

of the Lee-Carter model, denoted by F1, and the model with an additional cohort

parameter, denoted by F2.

Thus, Model F1 is a direct extension of the Lee-Carter model, in which we assume

that the time component κt follows a univariate autoregressive process AR(1):

Bx,t ∼ Poisson(RF
x,tνx,t), (7)

log νx,t ∼ N (αx + βxκt, τ) ,

κt ∼ N (φ0 + φ1κt−1, τκ) .

In turn, Model F2 includes the cohort parameter γt−x, which also follows a univariate

autoregressive process AR(1):

Bx,t ∼ Poisson(RF
x,tνx,t), (8)

log νx,t ∼ N (αx + βxκt + γt−x, τ) ,

κt ∼ N (φ0 + φ1κt−1, τκ) ,

γt−x ∼ N (ψ0 + ψ1γt−x−1, τγ) .

Again, the identification of the model parameters is achieved by the same set of

constraints as in the model for mortality given in Equation (5) for k = F . Similarly,

the prior distributions for the model parameters are assumed to be the same as

in the model for mortality in Equation (6). The only exceptions here concern the

univariate distributions for φj ∼ N (0, 1) and τκ ∼ Γ(0.1, 0.1).

4.3 Forecasting immigration counts and emigration rates

Similar to the models for mortality and fertility, the model for immigration counts

and emigration rates is based on the Lee and Carter (1992) approach with the Pois-
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son and log-normal extension. Since we acknowledge the fact that emigration and

immigration of both males and females can be interrelated, we assume correlation

between the time parameters κt for all these four components. We also assume that

the immigrant counts Ikx,t follow a Poisson distribution with mean θkx,t, whereas the

Poisson part for the emigrant counts Ek
x,t have mean ηkx,tRk

x,t, which permits mod-

elling and forecasting the emigration rates rather than counts (for a rationale, refer

to McDonald and Kippen 2002).

In the model, we also account for the irregularities observed in the data (see

Figure 2). Two versions of the model are considered, one without smoothing, de-

noted by IE1, and the other with smoothing built in into the prior distributions for

the age specific model parameters αx and βx, denoted by IE2. Unlike fertility and

mortality, there is no clear rationale for including a cohort parameter in the model

for migration.

Thus, in Model IE1, for both sexes, we assume

Ek
x,t ∼ Poisson(Rk

x,tη
k
x,t), (9)

log ηkx,t ∼ N
(
αEkx + βEkx κEkt , τEk

)
,

Ikx,t ∼ Poisson(θkx,t) (10)

log θkx,t ∼ N
(
αIkx + βIkx κ

Ik
t , τ

Ik
)
,

where superscripts E and I relate to emigration and immigration, respectively. The

time-specific parameters follow a multivariate autoregressive process with a drift,

as well as logarithmic and linear trends. We simplify the model by assuming that

the time parameters κt depend only on their own lagged values and not the other

direction of flows or the flow for the opposite sex. It is, however, assumed, that

time parameters for emigration and immigration for males and females are instan-

taneously correlated in a given year t. That is, we assume that

κκκt ∼MVN 4 [φ0 + φ1 log(t) + φ2t+ I4φ3κt−1,Σ] , (11)

where κt =
(
κEFt , κEMt , κIFt , κIMt

)′, φφφi = (φi1, . . . , φi4)
′, Σ is a matrix of precisions,

I4 is a 4× 4 identity matrix, and an apostrophe (′) denotes transposition.
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In this model, analogous constraints to those for mortality and fertility (see

Equation 5) are imposed on the model parameters. The assumed prior distributions

for parameters φij, τ ls, where l denotes the direction of migration (E or I), are the

same as in Equation (6). For the remaining model parameters the prior densities are

αsx ∼ N (0, 0.01), βsx ∼ N (0, 0.01), (12)

Σ ∼Wishart (4I4, 4) .

Model IE2 for emigration and immigration is the same as IE1, except that it

includes an algorithm for smoothing the irregularities observed in the International

Passenger Survey data. Due to its relatively small sample size and that migrants

represent a very small fraction of the overall sample, there are large irregularities

observed in the detailed characteristics of migration, such as breakdowns by age

and sex (Raymer et al., 2011). These irregularities require smoothing so that the

artificial age patterns observed in the data can be avoided. For this purpose, in our

model we incorporate smoothing based on the ideas originating from the spatial

autoregressive processes, developed by, e.g., Besag (1986).

Having specified the model as in IE1, we construct the prior densities for the

age-specific parameters αx and βx in the following way. Note, we omit the sex and

migration direction superscript for clarity. For the youngest and oldest age groups

we assume that the mean of the prior distribution depends on the second youngest

and second oldest group, respectively:

α0 ∼ N
(
α1,

1

2
τα

)
, α90+ ∼ N

(
α89,

1

2
τα

)

and

β0 ∼ N
(
β1,

1

2
τβ

)
, β90+ ∼ N

(
β89,

1

2
τβ

)
.

For the remaining age groups, we assume that their means depend on the average

of the two neighbouring age groups x− 1 and x+ 1:

αx ∼ N
(

1

2
αx−1 +

1

2
αx+1, τα

)
, x /∈ {0, 90+},
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βx ∼ N
(

1

2
βx−1 +

1

2
βx+1, τβ

)
, x /∈ {0, 90+}.

The above construction of the conditional precisions for each age group ensures that

the unconditional precision is constant for all age groups. Finally, we assume that

τα = τβ = 0.01.

4.4 Population projection model

The results of forecasting the four population components of population change are

subsequently combined into a cohort component projection model (see Rogers 1995

and Preston et al. 2001). The projection model is specified as

 PF
t+1

PM
t+1

 =



abt 0

sFt O

(1− a)bt 0

O sMt


×

 PF
t

PM
t

+

 IFt

IMt

 , (13)

where Pk
t =

(
P k
0,t, . . . , P

k
z,t

)′ is vector of mid-year population sizes by age and sex k,

Ikt =
(
Ik0,t, . . . , I

k
z,t

)′ is a vector of immigration counts. Further, bt = (0, . . . , b14,t, . . . , b45,t, . . . , 0)

is a vector of birth rates,

skt =



sk0,t 0 0 . . . 0

0 sk1,t 0 . . . 0

... . . . ...

0 0 . . . skz−2,t 0 0

0 0 . . . 0 skz−1,t skz,t


is a matrix of survivorship rates and a = 1/2.05 is the assumed proportion of female

births in the population. Finally, 0 = (0, . . . , 0) is a vector of length 91 and O is a

matrix of zeros of size (90 × 91). The survivorship rates come from the mortality

and emigration models:

skx,t =
1− 0.5(µkx,t + ηkx,t)

1 + 0.5(µkx+1,t + ηkx+1,t)
, for x 6= z, (14)
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skz,t =
1− 0.5(µkz,t + ηkz,t)

1 + 0.5(µkz,t + ηkz,t)
, for x = z, (15)

and the life-table birth rates come from the fertility model:

bx,t =
1

1 + 0.5µF0,t

1

2

(
νx,t + skx,tνx+1,t

)
. (16)

An implicit assumption is made about fertility that the rates for boundary ages,

that is, ‘less than 15’ and ‘45+’ are multiplied in the life table by the population

aged 14 and 45, respectively. However, since these rates are very small, the overall

effect is negligible.

4.5 Model validation and selection

The models for the population components that underlie the population forecast are

selected from the models proposed in the previous sections. The selection process

is based on (i) visual evaluation of goodness of fit of the model to the data, as

well as the produced forecasts, (ii) ex-post evaluation of the in-sample forecasts of

the population components based on the 1975-2000 sample, and (iii) the Deviance

Information Criterion (DIC) as a formal criterion for model selection.

The DIC (Spiegelhalter et al. 2002) is a tool for assessing the goodness-of-fit of

a model to the data, which enables selecting the best performing model. It is often

considered a generalisation of the Akaike Information Criterion (AIC) for comparing

complex hierarchical models. It utilises a deviance of the likelihood evaluated at the

mean of the posterior distribution of the likelihood as the goodness of fit measure,

corrected with the so-called ‘effective number of parameters’ in a model (for defini-

tions and formal derivation, see Spiegelhalter et al. 2002). The requirement for using

DIC is that the posterior distribution is approximately multivariate normal. A rule

of thumb for selecting the best performing model is similar as for the AIC, namely,

the lower the value of the criterion, the better fit of the model.
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5 RESULTS

In this section, we present the results of forecasting the population components

with the models described in previous section. For each component, we discuss the

goodness-of-fit of the model to the data, forecasts of the future patterns and select

the underlying model to be used for the population forecast.

5.1 Forecasts of mortality

In the first row of Figure 3, we present the fit of the models M1 and M2 to the 2009

data. It can be observed that the fit of the M2 model with the cohort component

reflects the data better than M1. In particular, M2 is able to reproduce the mortality

volatility of the cohort born during the pandemic of influenza in 1918-1919. Mortality

projected with M1 is lower than with M2, but the age pattern is more uncertain

(see second row of Figure 3). This leads to higher but more uncertain predictions of

life expectancy (see third row). Predicted life expectancy increases in both M1 and

M2, but for the latter model the pace of growth reduces over time.

The underlying model for use in the population forecast is selected by means

of combining the formal criteria (DIC), as well as visual inspection of the results

and analysis of the in-sample predictions of the model. The visual inspection of

the results of both M1 and M2 does not lead to a clear conclusion. It seems that

M2, by including the cohort effect, provides a better fit of the model to the data.

The importance of the cohort effect in measuring and predicting period mortality

rates and the resulting life expectancies is pointed out in recent literature (Luy and

Wegner 2009; Luy 2010). In particular, the cohort effects are likely to stem from

the long-lasting effects of early-life events and circumstances on mortality, rather

than being a result of whole life trajectories experienced by particular cohorts, as

demonstrated in a series of longitudinal studies (e.g. Bengtsson and Mineau 2009;

see also Murphy 2010 for a general overview and a critical discussion).

To support our rationale, the in-sample prediction of both models on the 1975-2000

sample is analysed. The M1 model yields predictions with relatively large uncer-

tainty, which can be observed in the bottom plot of life expectancy. For M2, the

uncertainty is much smaller and, thus, consistent with the results obtained on the
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Figure 3: Model fit for mortality to 2009 data for females (top plots), predicted
mortality by age for 2024 (second row plots), predicted life expectancy based on the
full dataset (third row plots) and 1975-2009 sample (bottom plots).

full sample. Here, the predictions seem to be slightly lower than the observed life

expectancy. When we compare the ex-post predictions, it turns out that 59% of the

observed mortality rates for years 2001-2009 fall into the 80% predictive intervals

in M1 model. For the 95% predictive interval, 80% observations fall into it. The M2

model preforms better; the percentages of the observed mortality rates falling into

80% and 95% predictive intervals are 68% and 86%, respectively. It is also observed
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that the mortality rates are more often overestimated, which results in a larger de-

crease in the median forecast of life expectancy than is actually observed. Finally,

the DIC points clearly to the M2 model estimated on both full dataset and the

truncated sample (see Table 1). It is smaller for the M2 in both full and truncated

sample cases.

Table 1: Deviance Information Criteria (DIC) for models for population components

Mortality Fertility Migration
Full model
Model 1 65970 14790 26100
Model 2 64520 14790 25900
In-sample predictions model
Model 1 49120 10920 18210
Model 2 48360 10940 18070

5.2 Forecasts of fertility

The age-specific forecasts for fertility are presented in Figure 4. In the first row,

we observe the fit of the models F1 and F2 to the 2009 data. The model with the

cohort effect (F2) provides a better fit with lower uncertainty. Also, the 2024 forecast

(second row) appears more plausible than the forecast based on the F1 model. The

F1 model produces an unrealistic median fertility rate of 0.2 for females aged 33-35

years.

The resulting total fertility rate (TFR) is presented in the third row of Figure 4. It

is clear from the plots that F2 fits the data better than F1. Moreover, the projected

TFR from F1 shows an explosive pattern which we consider unrealistic, with a

predicted median TFR of around 2.6 in 2024. Hence, we believe that the pattern

of gradual diminishing of the recently increasing TFR produced by F2 reflects our

expectations about future fertility in the UK.

The in-sample predictions of the fertility rates confirm our rationale for choosing

F2 as the foundation of the population forecast. Again, F2 appears to fit the data

better (see fourth row of Figure 4). The resulting forecasts of TFR under F2 seem

to be more uncertain than in the case of F1. However, F1 misses the decline in early

2000s. These results are confirmed by the ex-post analysis of the fertility rates. For
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Figure 4: Model fit for fertility to 2009 data for females (top plots), predicted fertility
by age for 2024 (second row plots), predicted total fertility rate based on the full
dataset (third row plots) and 1975-2009 sample (bottom plots).

F1, 55% of observed fertility rates fall into the 80% predictive interval and 72% fall

into the 95% predictive intervals, whereas for F2 the percentage of data falling into

respective predictive intervals are 61% and 73%.

The DIC computed for the full sample suggests indifference between F1 and F2,

which may be a result of more parameters in F2. When the truncated sample is used

to estimate model parameters, F1 obtains a slightly lower DIC. This situation may

result from the fact that only 26 observations are used for estimation, which may not
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be sufficient to capture the cohort effects in the sample. Nevertheless, the ex-post

analysis of the in-sample predictions, as well as the visual assessment of the results

supports using the model with cohort effect included for the population forecasting.

This rationale is supported by vast demographic literature on the quantum and

tempo effects in fertility (Bongaarts and Feeney 1998). In particular, we refer to the

recent postponement and subsequent recuperation of fertility in many developed

countries, where the cohort effects are the most profound (see, e.g., Sobotka et al.

2011). In our results, slightly declining, yet uncertain, fertility rates may indicate yet

another period of postponement, which can be possibly linked to difficult economic

conditions in the times of budgetary austerity in the United Kingdom in the second

decade of the 21st century (Kreyenfeld et al. 2012).

5.3 Forecasts of emigration and immigration

The results of forecasting emigration rates and immigration counts for females are

summarised in Figure 5. (Males are not shown for space reasons.) In the first row, we

present the IE1 and IE2 forecasts for the year 2009. We observe that both models fit

the data reasonably well. As expected, the age patterns yielded by IE2 are smoother

than the ones from IE1. The smoothing applied in IE2 also results in reduction of

the forecasted emigration rate in 2024, compared to IE1 (first two plots in the second

row). The same pattern is observed for males (not shown) and, to a lesser extent,

in the predicted age profiles of immigration counts for both males and females. This

leads to the differences in the predicted mean emigration rate and total immigration.

For instance, the mean total immigration of females in 2024 is 475 thousand for IE1

and 418 thousand for IE2. Smoothing across age also reduced the overall uncertainty

of the forecasts.

The results of the in-sample predictions for the mean emigration rate and total

immigration in the fourth row of Figure 5 appears to contradict the conclusion from

the previous paragraph, especially for the emigration rates. In the example of the

predicted mean rate for female emigration, the predictive distribution under IE2 has

much heavier tails than under IE1, with median of the migration rate being 0.0035

and 0.004 under IE1 and IE2, respectively. For males (not shown), the difference
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Figure 5: Model fit for immigration counts and emigration rates to 2009 data for
females (first row), forecasts for 2024 (second row), predicted mean emigration rate
and total immigration based on the full dataset (third row) and 1975-2009 sample
(fourth row).

in the means is two-fold. On the other hand, we find that the estimates of the

parameters in the model based on the truncated dataset are substantially different

from the ones obtained in the full dataset case. In particular, in the truncated

data models we find substantial changes in favour of the random walk or explosive

behaviour of the emigration rate in the VAR model for the time components of

migration; see Equation (11). This situation may result from changes in the observed

migration patterns after 2000, especially increase in the volume of immigration and

the volatility of emigration.

We believe that the smoothing of the age profiles is necessary in the case of the

UK data, due to the irregularities resulting from the small samples (see Section 3).

Thus, we select IE2 for our projection exercise, despite its sub-optimal performance

in the in-sample prediction exercise. This choice is also suggested by the DIC, which

favours IE2 in the analyses of both the full and truncated data (see Table 1).
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5.4 Population forecasts

The age composition of the forecasted 2024 population is presented in the first row

of Figure 6. Forecasts of the total population for females and males are presented

in second row. We observe that the age profile of the 2024 population is shaped

mostly by future migration and, to a lesser extent, fertility. The largest uncertainty

concerns the youngest population, as well as the population aged 20-45, for both

males and females. These findings confirm the observation by Keyfitz (1981) on the

plausible limits of population forecasting, which were set to 20 years ahead. It is

also expected that the number of the elderly persons will be larger in 2024 but the

working-age population, that is, population aged 20-45, will be most numerous.
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Figure 6: Projected age profiles of males and females (first row) and projected pop-
ulations of females, males and total (second row).

20



As far as the total population size is concerned, it is expected that there will be

only around 200 thousand more females than males, whereas in 2009 the difference

was more than 1 million and in 1975 it was 1.5 million. This is most likely due to

the larger proportion of male migration and a gradual closing of the life expectancy

gap between the sexes. The median size of the 2024 population is 70.5 million, which

is nearly 9 million larger than the population size observed in 2009. For 2020, the

forecasted median population is 67.7 million. In the official projections for 2020

prepared by the Office for National Statistics (2011), with 2010 as a baseline popu-

lation size, the predicted total population is 67.2 million, i.e., half a million lower.

However, the Office for National Statistics prediction falls into our 50% predictive

interval. The lower Office for National Statistics prediction is a result of a more con-

servative prediction of international migration. The underlying Office for National

Statistics model relies on the assumption that net migration stays constant at the

levels observed in recent years, that is at the level of 200 thousand annually (Office

for National Statistics 2011).

6 DISCUSSION

In this paper, we treated the Lee-Carter model as a platform for estimating age

schedules of the four demographic components of change in the UK. We then com-

bined these components into a single forecast by means of a cohort-component

projection model. We also explored the correlation of each of the components in

time, as well as between sexes and components (for emigration and immigration),

which is embedded in the Lee-Carter method. For emigration and immigration, we

provided a tool for smoothing the irregularities in the data.

The main contribution of this paper have been to explore a new approach for

integrating demographic components to provide stochastic population forecasts by

age and sex. The Bayesian approach that we adopted accounts for the uncertainties

embedded in births, deaths, emigration and immigration, as well as across age and

sexe. We show that the same general framework of the Lee-Carter approach for

modelling age and sex patterns of mortality and fertility can be coherently applied
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to model corresponding patterns of migration. Irregularities in the data, such as

those observed for the UK, can also be accounted for within the model.

Further research should explore other models for forecasting age patterns of

demographic components, such as the functional models developed by Hyndman and

Booth (2007). Analogously, various specifications for the time component models

(such as ARIMA or VAR models of higher order) should be investigated. Next,

the underlying models of components for the population forecast can be selected by

using various techniques, of which Bayesian model averaging (see Raftery et al 1997)

seems to be most appealing. In this way, the model uncertainty would be accounted

for in a coherent manner. Finally, the uncertainty of the baseline population size

used for projections could be incorporated into the projection. We hope this work

provides a foundation for such extensions.
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