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ABSTRACT 

In this paper, we develop a straightforward, flexible approach to projecting total population, as 

well as detailed population projections by age, sex, and race and by age, sex, and Hispanic 

origin. The approach is a top-down, layered approach that relies on multiple methods. Having 

implemented the approach to produce detailed population projections for the state of Virginia 

and its 134 localities, the current research explores its applicability to producing population 

projections across the 50 states and Washington, D.C. for 2020-2040. 

INTRODUCTION 

As many state agencies are developing their own post-2010 projections, the most common 

approach to producing detailed population projections is the cohort-component method, a 

theoretically intuitive but cumbersome procedure. 

A review of the empirical literature and the practices among states reveals little consensus on the 

most appropriate projection methodology (Smith, Tayman, and Swanson 2001). While the most 

commonly employed method for projecting population at the national, state, and sub-state level 

is the cohort component method (cf. Egan-Robertson, Harrier, and Wells 2008), though others 

have used time series methods, structural models, or a combination of methodologies. 

Evaluations of the accuracy of various methods across a 20-year horizon reveal that, with the 

exception of the poor performance of exponential trend models, nearly all approaches to total 

population projections produce similar results with respect to measures of error (Smith and 

Sincich 1992). In addition, in most states that produce projections with detailed population 

characteristics, the cohort-component method is used; few have employed or evaluated an 

alternative, the Hamilton and Perry method (1962). 

The lack of consensus--and inherent uncertainty of the future---means practical considerations 

should prevail in the choice of methodology. In this paper, we develop a straightforward, flexible 

approach to projecting total population, as well as detailed population projections by age, sex, 

and race, and by age, sex, and Hispanic origin. This approach is a top-down, layered approach 

that relies on multiple methods. Having implemented this approach to produce detailed 

population projections for the state of Virginia and its 134 localities, the current research 

explores its applicability to producing population projections across the 50 states and 

Washington, D.C., for 2020-2040. 
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Three criteria shaped our approach: parsimony, universal applicability, and state specificity. The 

method is elegant, requiring fewer input data and fewer assumptions than cohort component, and 

the procedures are easy to implement. The approach is generalizable to all equivalent 

geographical units. And, the method incorporates state-level demographic accounting to the 

greatest extent possible to reflect the influence of existing state trends on future population. 

Because detailed projections, broken down by age, race, ethnicity, and sex, are prone to larger 

errors, we begin by projecting total population. Total population is the most commonly used 

component of population projections. Because these tend to be more stable and accurate than 

subpopulation totals, we use the projected total population as a control total for more detailed 

projections. The second priority in our approach was to develop accurate age projections. Age 

projections are frequently used to assess the future demand for education, healthcare, housing, 

and many other goods and services. Third, race and ethnicity are projected within each age 

group. Finally, sex is projected for each age-race and age-ethnicity group. 

DATA AND METHODS 

Data 

We use state total population counts from the decennial census from 1950-2010 to develop total 

population projections. We use detailed state-level age breakdowns from 1990, 2000, and 2010; 

state-level age-race and age-Hispanic origin breakdowns from 2000 and 2010; and state-level sex 

breakdowns from 2010 to project detailed population characteristics. 

Methods 

 (1) Total Population 

Future population is modeled as a function of past population. Using Census population data 

from 1950 through 2010, the total population in each state is regressed on the prior three 

decades’ population counts.
 1
  Having opted for an over-time model-approach, the two dominant 

choices revolved around (1) how to deal with state heterogeneity – the potentially different 

patterns across states – in a unified framework, and  (2) the appropriate lag structure for a model.  

 

No model of over-time change is going to apply equally well to a set of units as diverse as the 

fifty states (and Washington D.C.). We begin with the observation that the census counts of the 

states over time comprise panel data, and adopt traditional panel data approaches for dealing 

with unit heterogeneity – mixed effects or multilevel models.
2
 The multilevel model allows us to 

retain state-specific estimates while borrowing strength across observations in all states. As a 

consequence, we can estimate a model with relatively few time points (Maas and Hox 2005). We 

do not assume that each state follows the same trajectory, that is, that they are governed by the 

                                                           
1
 We assessed the model using on various ranges of data, as well, incorporating data from 1900 to present. 

2
 This family of models is also widely known as hierarchical models or random effects models. 
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same relationship between past and present. Rather, coefficients are allowed to vary across 

states; these random effects, written as additional error terms, u0i and u1i, capture how much each 

state’s coefficients deviate from the nation-wide effect. 

 

The usefulness of the model depends heavily on adequately representing the dynamics in the 

series. The model chosen for total population projections was the best performing model based 

on an evaluation of multiple lag lengths and multiple transformations of the dependent variable, 

including population counts, differencing, and growth rates. We evaluated these alternatives with 

reference to time series diagnostics (the augmented Dickey-Fuller (ADF) tests for unit roots 

(Said and Dickey 1984; Hamilton 1994)
3
), model fit criteria such as the Bayesian Information 

Criteria (BIC),
4
  and out-of-sample forecasting accuracy.

5
  

 

After extensive testing and evaluation, we selected an autoregressive mixed-effects model in 

which future population is modeled as a function of three lags of past population (AR3): 

 

 

            

            

            

            

 

Where Y is the population level, or count, t indexes time (Census decade) and i indexes the 50 

states and Washington D.C. The βs are parameters to be estimated, and the ε and μ are random 

effects. The auto-regressive part of the model implies that past population predicts future 

population; the mixed-effects element implies that there are differences in the relationship 

between the past and future across localities. 

                                                           
3
 The augmented Dickey-Fuller procedure tests for the presence of a unit root, but can incorporate a trend term to 

test for trend-stationarity as well as multiple lags to represent a more complex error process.   

 

For a simple AR(1) model, yt = ρt-1 + εt, a unit root is present if ρ = 1. Such a model is non-stationary. The Dickey-

Fuller test is implemented by regressing the first-difference of y on the lag of y along with, if desired, a deterministic 

time trend. That is, Δyt = α0 + δyt-1 + γt + εt. The test for a unit root is equivalent to a test of whether δ = 0.  

 

The augmented Dickey-Fuller test is used to test for a unit root in higher order autoregressive models. The procedure 

is like that of the Dickey-Fuller test but with an autoregressive process of lag order p:  Δyt = α0 + δyt-1 + γt + θ1Δyt-1 

+ ··· + θp-1Δyt-p+1 + εt. Typically, the lag structure is selected by beginning with a relatively high number of lags and 

successively eliminating each lag. The lag structure that produces the lowest information criteria (Akaike 

information criteria, AIC, or Bayesian information criteria, BIC), or the lowest number of lags that produces 

significant coefficients is selected. 
4
 The Bayesian, or Schwarz, information criteria is a measure of the relative goodness of fit of a model, and is 

generally used to compare among a finite set of models. Related to the Akaike information criteria, the BIC is based 

on the likelihood function but introduces a penalty for additional parameters in a model to discourage overfitting. 

The model with the lowest BIC is preferred, though the BIC cannot be meaningfully compared across models with 

different dependent variables. 
5
 Details are available from the authors upon request. 
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Out-of-sample validation  

In addition to model fit criterion, we evaluated the AR(3) model performance over 10-, 20-, and 

30-year projections horizons by comparing projected state population counts with observed 

census counts in 1990, 2000, and 2010. We used mean absolute percent error (MAPE) as a 

measure of overall error, and mean algebraic percent error (MALPE) as a measure of bias. Both 

MAPE and MALPE are regularly used as measures of forecast accuracy (e.g., Smith and Sincich 

1992; Tayman, Smith, and Lin 2007). 

Table 1. Out-of-Sample Forecast Errors for 10-, 20-, and 30-year 

State Projections with AR(3) Model 

          

Data/Launch 

Year 

Horizon 

(Years) 

Projection 

Year 
MALPE MAPE 

1950-2000 10 2010 0.84 2.41 

1950-1990 10 2000 -4.27 7.01 

1950-1990 20 2010 -4.28 10.2 

1950-1980 10 1990 3.27 5.44 

1950-1980 20 2000 1.06 7.86 

1950-1980 30 2010 1.72 10.38 

 

Consistent with other forecast evaluations, the accuracy of the model varies with the base data, 

launch year, and horizon (Keilman 2008; Smith and Tayman 2003; Tayman, Smith, and Lin 

2007). Accuracy declines with horizon length, reflecting the increasing uncertainty associated 

with making long-range projections. Overall, the AR(3) model shows no bias and performs very 

well. 

 

(2) Age 

The Hamilton-Perry method is a reduced form of the cohort-component method that requires less 

detailed data and captures the major components of population change (births, deaths, and 

migration) in a general way (Hamilton and Perry 1962).  Research has shown that the Hamilton-

Perry method is an accurate methodology for projecting population characteristics (Smith and 

Tayman 2003).  In our implementation, birth rates in the prior decade are measured by a child-

population ratio (CPR) in which the child population (0-4 and 5-9) is divided by the population 

of child-bearing age.  For example, the CPR for children 0 to 4 is 

       
       

    

        
     

Deaths and migration are jointly captured in cohort-change ratios (CCR), that is, the ratio of 

total population in age group a+10 in the launch year (2010) divided by the total population of 

age group a in the base year (2000) 
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For example, the CCR for the 25 to 29 year-old age group would be calculated as 

         
         

    

        
     

CCRs greater than 1 indicate population growth due to net migration that outweighs deaths, 

whereas CCRs less than 1 indicate population loss due to deaths, out-migration, or a combination 

of the two.  The population is projected forward by multiplying the current population at age a 

by the CCR for that age group.  The young population (ages 0 to 9) is then projected by 

multiplying the CPR by the projected population of childbearing age. 

 

For the 2020-2040 projections by age, the following procedure was developed: 

1) CCRs and CPRs were calculated for each state for 1990-2000 and 2000-2010 and 

averaged together.  This helps smooth decade-to-decade variability that might result in 

unreasonable future projections if projected forward 30 years.  

2) The averaged CCRs and CPRs were applied to the 2010 base population to project 2020, 

to the projected 2020 population to project 2030, and to the projected 2030 population to 

project 2040. 

3) The age projections are controlled to the state total population projection developed in the 

AR(3) model. 

 

(3) Race and Ethnicity 

The Hamilton-Perry method was also used to project age groups by race (white, black, Asian, 

and other) and Hispanic origin (Hispanic and non-Hispanic), albeit with different 

implementation. We first considered using state-specific age-race/ethnicity CCRs.  However, 

preliminary analyses of detailed population projections revealed substantial shifts toward the end 

of the projection horizon that were inconsistent with historical trends.  This was largely due to 

high cohort-change ratios for Asian, other, and Hispanic groups, compared to more stable CCRs 

for white, black, and non-Hispanic residents.  The high CCRs for these groups reflected high 

immigration among an initially smaller population; changes in the way that individuals are able 

to identify themselves on the Census form; social changes that increase the prevalence of multi-

racial individuals; and increasing individual willingness to identify and claim “other race” on 

Census forms. 

 

To address these issues, we developed an approach to implementing the Hamilton-Perry method 

to project the proportion of each racial and ethnic group within each age group: 
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1) Used national-level age-race/ethnicity-specific CCRs (based on 2000 to 2010) and CPRs 

(held constant to 2010) to project each state.
6
 

2) Adjusted CCRs for Asian and other race and Hispanic groups downwards to reflect 

growing population base and slowing of immigration. For each age-race and age-

ethnicity grouping we slowly tamped their CCR towards that of white or non-Hispanic 

groups to reflect convergence in the net effects of mortality and migration over time. For 

Asian, other, and Hispanic projections at each age group 

a. Their CCR was averaged with the CCR for white (or non-Hispanic) Americans 

(CCR2020proj = [2*CCR2010+CCRwhite2010]/3) and applied to the 2010 base 

population to project 2020. 

b. The averaged CCR was again averaged with the CCR for white (or non-Hispanic) 

Americans (2/3 and 1/3 again) and applied to the projected 2020 population to 

project 2030. This CCR averaging procedure was repeated again to project the 

2030 projected population to 2040. 

3) For each projection year, the population proportion of race r at age a for each state was 

determined by 
  

(                            )
 

while the population proportion of ethnic group e at age a for each state was determined 

by 
  

(                       )
 

4) The race/ethnicity proportion was raked to the state-specific age distribution. 

 

(4) Sex 

Our methodology holds the sex ratio for all subgroups constant to the total population’s age-

specific sex ratio within each state.  Since sex ratios are historically stable, this enables states 

with unique sex structures (a high proportion of prisons, military barracks, etc.) to retain their 

local characteristics.   

          
      
    

    
     

In the above equation, i indexes state, a indexes age group, and s indexes sex. 

                                                           
6
 We did not use average of 1990-2000 for two reasons: 1) Change in Census form means that other race CCRs will 

be highly skewed between 1990 and 2000; 2) Concerns about rapidly changing, initially small populations are 

magnified when using 1990 to 2000, when the immigration wave began. 
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Producing Detailed Characteristics 

The final distribution of detailed population characteristics is calculated by the following: 

                                          

Where the number of individuals in a given age group a of race or ethnic group r and sex s living 

in state i at time t are equal to the projected total population Y of state i (from AR(3) model, step 

(1)), times the proportion within that age group (step (2), HP model), the proportion of the race 

or ethnic group within that age group (step (3), HP model), and the proportion of the sex within 

that age group (step (4), 2010 ratio). 

National Projections 

National projections are equal to the sum of the projections for each of the 50 states and the 

District of Columbia. 

RESULTS 

Projecting 2020, 2030, and 2040 by age, sex, and race, and by age, sex, and ethnicity for all 50 

states and the District of Columbia, and summing these results to produce national totals 

produces far more detail than can reasonably be presented in this paper. We focus on the 

presentation of descriptive statistics for 2020-2040 at the national level. Appendix 1 contains 

forecasts of total population for 2020, 2030, and 2040 for each of the 50 states and the District of 

Columbia. 

Table 2. Observed and Projected Characteristics, U.S., 2010-2040   

  
2010 Census 

Projections 

  2020 2030 2040 

Total Population 308,745,538 337,979,529 370,164,485 405,021,914 

Age         

Under 15 19.8% 19.3% 19.2% 19.2% 

15 to 24 14.1% 13.3% 13.2% 13.2% 

25 to 64 53.0% 51.7% 49.3% 49.5% 

65 to 84 11.3% 14.1% 16.8% 16.0% 

Over 85 1.8% 1.5% 1.6% 2.0% 

          

Median Age 37.2 37.6 38.2 38.2 

Race         

White 72.4% 69.6% 66.8% 63.9% 

Black 12.6% 12.9% 13.2% 13.4% 

Asian 4.8% 5.6% 6.2% 6.5% 

Other 10.2% 11.9% 13.8% 16.2% 

          

Hispanic 16.3% 20.2% 24.2% 28.2% 
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Table 2 shows projected total population and projected characteristics at the national level for 

2020 through 2040. Total population is projected to grow steadily, at a projected growth rate of 

about 9.5% each decade. The proportion of the total population at younger ages (under 15) is 

projected to decrease slightly, while the proportion at ages 65 and above will increase 

significantly starting in 2020, due to the aging of the Baby Boomers. 

Racial and ethnic diversity are projected to continue to increase nationally, with growing 

proportions of Hispanic and of Asian and other race populations. These projections reflect 

population growth due to both childbearing and continued immigration. 

Comparison to U.S. Census Bureau and United Nations Projections 

Both the U.S. Census Bureau and the United Nations recently released long-range population 

projections utilizing the standard cohort-component approach. The U.S. Census Bureau’s are 

limited to the United States and use time series methods to project the components of change and 

corresponding population by age, sex, race, and Hispanic origin through 2050 (U.S. Census 

Bureau 2012). The U.N. used probabilistic projections of fertility (a Bayesian hierarchical 

model) to produce population projections by age for 196 countries through 2100 (UN-DESA 

2011). 

Total Population 

Table 3 shows the projected U.S. total population for 2020, 2030, and 2040 under the AR(3) 

model developed in this paper, the U.S. Census Bureau’s cohort-component approach, and the 

U.N.’s cohort-component approach. The U.N. and U.S. Census Bureau projections track closely 

for all three time points. The persistent 2,000,000 difference in projections most likely reflects 

the discrepancy between 2010 data: the U.N. projected the U.S. population at 310 million, 

whereas the actual 2010 census count was 308 million. 

Table 3. U.S. Total Population Projections by Source, 2020-2040 

        

  2020 2030 2040 

AR(3) 337,979,529 370,164,485 405,021,914 

U.S. Census Bureau 333,896,000 358,471,000 380,016,000 

U.N. 336,683,000 360,581,000 382,075,000 

Both the Census Bureau and the U.N. project steadily declining growth rates in the coming 

decades, dropping from 8% between 2010-2020 to 6% between 2030-2040. In contrast, the 

AR(3) model projects a relatively stable growth rate of about 9.5% for each decade. 

Consequently, when compared to the Census Bureau and U.N. numbers, the AR(3) total 

population projections are fairly close for 2020, and then begin to diverge over time. 
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Age Structure 

Figure 1 shows the projected population proportion under 15 according to the Hamilton-Perry 

method employed in our approach (HP), the U.S. Census Bureau (CB), and the U.N. (UN) 

population projections. These proportions are quite close, though the Hamilton-Perry projections 

developed in this paper project a relatively constant population proportion under 15 (on average, 

19.3%), while both the Census Bureau and U.N. projections project a steadily declining 

population proportion at young ages. The declining proportion at young ages is predominantly 

due to the growing proportions of the population at older ages, shown in Figure 2. 

 

 

All three projections scenarios project increasing proportions of adults 65 and older in the United 

States. The Hamilton-Perry method used here projects continued immigration for working-age 

19.3% 19.2% 19.4% 

20.3% 
19.9% 

19.3% 
19.9% 

19.2% 
18.9% 

2020 2030 2040

Figure 1. Projected Population Proportion Under 15 

by Methodology, 2020-2040 

HP CB UN

15.6% 

18.3% 

17.1% 16.8% 

20.3% 
21.0% 

16.2% 

19.8% 
20.8% 

2020 2030 2040

Figure 2. Projected Population Proportion Over 65 by 

Methodology, 2020-2040 

HP CB UN
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individuals at higher levels than projected in the cohort-component models employed by the U.S. 

Census Bureau and the U.N., and it does not extrapolate regarding improvements in life 

expectancy and mortality declines. As a result, the proportion of older adults under the H-P 

method peaks out in 2030 with the last of the Baby Boom cohort, and then declines slightly in 

2040, in contrast to the continued increase in adults 65 and older in the other models. 

Ethnicity 

The U.S. Census Bureau produces its projections with race and ethnicity crossed (white, non-

Hispanic; black, non-Hispanic; etc.) so specific comparisons by race are limited. Figure 3 shows 

the projected population proportion Hispanic under the Census Bureau (CB) projections and the 

Hamilton-Perry (HP) projections. In both projections scenarios, the population proportion 

Hispanic increases steadily between 2020 and 2040. The two methods are very close in 2020. 

The slightly higher population proportions Hispanic in 2030 and 2040 in the Hamilton-Perry 

projections again most likely reflect continued higher levels of migration assumed in the H-P 

approach than in the cohort-component methodology employed by the Census Bureau. 

 

DISCUSSION/CONCLUSIONS 

We hope this research encourages applied demographers, planners, and other data users to think 

more broadly about projections, their inherent uncertainty, and their usability. Our approach is a 

probabilistic total population projection with deterministic characteristics. It has the following 

characteristics: 

1. Prioritizes the most important component with the highest level of accuracy, total 

population. Next, age distribution is often critical for future planning. After this, 

population details by race, ethnicity, and sex may be desirable, but are more prone to 

social/measurement fluctuation, particularly in racial and ethnic identification. 

28.2% 

24.2% 

20.2% 

25.0% 

21.9% 

19.1% 

2040

2030

2020

Figure 3. Projected Proportion Hispanic by 

Methodology, 2020-2040 

CB HP
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2. Consequently, it layers the most accurate information and uses it as a control total for 

less accurate information. 

3. Allows for the retention of state or local-specificity to the greatest extent possible. 

The layered approach implements the most effective method for each aspect of the projections 

and the model-based approach offers multiple benefits. 

The autoregressive mixed-effects model we employ here holds substantial promise for 

researchers interested in expanding this approach. The flexibility of the model and the relative 

simplicity of estimation allow the testing of many alternative assumptions, such as multiple lag 

structures and multiple transformations of the dependent variable, in a relatively brief time. The 

multilevel model can accommodate additional complexity in the form of additional random 

effects, such as the inclusion of spatial lags. Additional covariates could be added to the model, 

like non-time-varying covariates representing long-standing state characteristics though to affect 

population. Time-varying covariates could be added as well, like state GDP, unemployment, 

housing stock, so long as the researcher is prepared to forecast these inputs. 

Similarly, the Hamilton-Perry approach can be easily manipulated to test the effect of varying 

assumptions, such as declining mortality at older ages and lowered fertility rates, on long-term 

trends in population composition. 

Finally, projections are meant to paint a ballpark picture of what the future might hold, rather 

than carving out numerous detailed tiny cells with unknown accuracy. A comparison with the 

population projections recently released by the U.S. Census Bureau and the United Nations 

shows that the methodology developed here produces national population totals, age structure, 

and ethnic breakdown that are quite similar, particularly for shorter-range projections of 10 or 20 

years. With increasing demands for detailed data production, this approach may work well for 

projections producers who wish to develop detailed, short-range projections. 
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Appendix 1. Observed and Projected Total Population, States, 2010-2040 

  
2010 Census 

Projections 

State 2020 2030 2040 

Alabama 4,779,736 5,063,010 5,344,109 5,631,240 

Alaska 710,231 807,768 908,083 1,007,569 

Arizona 6,392,017 7,838,769 9,556,768 11,558,644 

Arkansas 2,915,918 3,063,981 3,199,806 3,344,352 

California 37,253,956 41,225,964 45,394,776 49,511,716 

Colorado 5,029,196 5,754,161 6,561,624 7,444,989 

Connecticut 3,574,097 3,791,290 4,001,783 4,193,111 

Delaware 897,934 996,539 1,091,878 1,188,365 

District of Columbia 601,723 611,618 609,235 606,302 

Florida 18,801,310 22,292,758 26,310,824 30,767,300 

Georgia 9,687,653 11,407,810 13,477,429 15,932,734 

Hawaii 1,360,301 1,508,604 1,651,536 1,793,336 

Idaho 1,567,582 1,743,841 1,901,224 2,067,764 

Illinois 12,830,632 13,214,281 13,625,826 14,011,325 

Indiana 6,483,802 6,819,620 7,138,444 7,445,297 

Iowa 3,046,355 3,120,119 3,184,968 3,251,831 

Kansas 2,853,118 2,999,622 3,145,552 3,291,771 

Kentucky 4,339,367 4,559,315 4,768,093 4,983,525 

Louisiana 4,533,372 4,725,753 4,957,351 5,168,018 

Maine 1,328,361 1,400,635 1,476,237 1,550,052 

Maryland 5,773,552 6,252,371 6,720,727 7,171,419 

Massachusetts 6,547,629 6,788,833 7,045,072 7,288,405 

Michigan 9,883,640 10,078,204 10,382,446 10,634,796 

Minnesota 5,303,925 5,661,565 6,035,216 6,419,457 

Mississippi 2,967,297 3,062,460 3,167,959 3,278,352 

Missouri 5,988,927 6,313,716 6,633,987 6,963,034 

Montana 989,415 1,057,125 1,122,032 1,188,491 

Nebraska 1,826,341 1,908,363 1,984,255 2,062,172 

Nevada 2,700,551 3,297,777 3,940,937 4,671,394 

New Hampshire 1,316,470 1,429,691 1,556,031 1,681,726 

New Jersey 8,791,894 9,174,874 9,560,118 9,910,012 

New Mexico 2,059,179 2,280,993 2,507,412 2,738,504 

New York 19,378,102 19,780,808 20,205,132 20,584,586 

North Carolina 9,535,483 11,063,087 12,807,800 14,844,307 

North Dakota 672,591 691,785 705,133 718,392 

Ohio 11,536,504 11,822,135 12,127,654 12,380,847 

Oklahoma 3,751,351 3,986,235 4,208,416 4,437,472 

Oregon 3,831,074 4,209,593 4,601,805 5,002,050 

Pennsylvania 12,702,379 13,049,097 13,359,257 13,654,876 
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Appendix 1. Observed and Projected Total Population, States, 2010-2040 

(continued) 

  

State 
2010 Census 

Projections 

2020 2030 2040 

Rhode Island 1,052,567 1,096,698 1,154,679 1,210,842 

South Carolina 4,625,364 5,152,439 5,676,951 6,238,921 

South Dakota 814,180 851,068 882,550 915,338 

Tennessee 6,346,105 6,934,312 7,550,122 8,207,164 

Texas 25,145,561 30,233,340 36,317,932 43,572,640 

Utah 2,763,885 3,191,506 3,614,587 4,070,568 

Vermont 625,741 664,071 710,842 757,062 

Virginia 8,001,024 8,933,032 9,906,608 10,933,777 

Washington 6,724,540 7,582,515 8,513,320 9,504,881 

West Virginia 1,852,994 1,864,454 1,864,355 1,865,440 

Wisconsin 5,686,986 6,000,200 6,322,054 6,640,505 

Wyoming 563,626 621,732 673,556 725,247 

 


