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Approaches to Modeling Self-rated Health in Longitudinal Studies: 

Best Practices and Recommendations for Multilevel Models 
 

Abstract 

 

Self-rated health (SRH) is a key measure in the study of population health with proven 
external validity in predicting mortality. Nevertheless, failing to address the measure’s 
ordinal scale in statistical analyses poses a potential threat to internal validity. Despite the 
advent of rich panel data, sociologists have generally been slow in adopting longitudinal 
methods for ordinal outcomes, and many discard valuable information in favor of simpler 
methods. This paper reviews and contrasts several approaches to modeling SRH in 
longitudinal studies under the generalized linear mixed model framework. Model 
performance is compared (e.g., linear versus nonlinear, conditional versus marginal) 
using simulation and data from the Health and Retirement Study. Findings suggest that 
conditional cumulative-logit models provide more statistical power than their linear 
counterparts, but result in similar substantive conclusions. By contrast, dichotomizing 
SRH significantly reduces power and is ill-advised. The paper concludes with 
recommendations for modeling ordinal outcomes in longitudinal studies. 
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Introduction 

Self-rated health (SRH) is perhaps the most commonly studied health measure among 

demographers, epidemiologists, and sociologists of health. It has been utilized in 

numerous studies for both descriptive and inferential purposes and shown to have 

significant external validity with respect to predicting mortality (Kaplan and Camacho 

1983; Idler and Benyamini 1997; DeSalvo et al. 2006). Despite the increasing availability 

of rich longitudinal data, a review of the literature suggests that researchers often opt for 

cross-sectional analyses of SRH using a single wave of data or focus on change in scores 

between only two waves (e.g., Hughes and Waite 2009; Baker et al. 2001; Hughes et al. 

2007; Luoh and Herzog 2002). Such practices discard an enormous amount of useful data 

that are central in describing complex health trajectories over time. The use of 

longitudinal data is of paramount importance for studying population level health, as 

cross-sectional data seriously underestimate the deterioration of health with aging and fail 

to reflect the progression of SRH over the life course (Orfila et al. 2000). 

One of the principal reasons for the underutilization of longitudinal data, at least 

in the case of SRH, is the lack of consensus about appropriate methodology for 

longitudinal ordinal outcomes. Even when elaborate statistical methods are used to model 

SRH longitudinally, limited attention is explicitly given to its ordinal scale and 

researchers often default to methods designed for continuous outcomes (Benyamini et al. 

2009; Liu 2012; Meadows 2009; Sacker, Worts, and McDonough 2011; Wilmoth, 

London, and Parker 2010). The use of ad hoc methodology not only threatens the validity 

of results, but also adds considerable difficulty when comparing results across studies. 
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This paper aims to alleviate such ambiguities by reviewing and comparing several 

leading approaches to modeling SRH in longitudinal studies. First, I discuss the unique 

characteristics of SRH and key concerns when modeling ordinal outcomes in cross-

sectional studies. Second, I review a general framework for modeling longitudinal data, 

with particular attention to ordinal outcomes. Models for longitudinal data are classified 

using a two-dimensional scheme: linear versus nonlinear (e.g., logit) and marginal versus 

conditional (i.e., mixed models). Third, I compare the performance of several modeling 

approaches using both data from the Health and Retirement Study and simulation with 

known population parameters. 

Statistical methods can serve multiple purposes including description (data 

reduction), prediction, and explanation (inference) – each having distinct implications for 

modeling practices, with the latter typically being of most interest to social scientists 

(Shmueli 2010). Model selection is particularly difficult across different model families 

and assessing model fit depends, at least in part, on the analyst’s goals. Thus, in 

comparing longitudinal approaches to modeling SRH, I chose to emphasize statistical 

inference and substantive interpretation over other goals of statistical analysis. 

Specifically, models are evaluated on the basis of making correct inference and their 

statistical power. 

Finally, I provide a practical discussion for researchers on the trade-offs 

associated with each modeling approach. The practice of dichotomizing SRH is also 

evaluated in the context of longitudinal studies and commented on. Despite the focus on 

SRH, much of the following discussion can easily extend to other ordinal outcomes with 

similar characteristics. 
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Characteristics of Self-rated Health 

The measurement of SRH is not entirely consistent across studies. Differences exist in the 

number of levels measured (Eriksson, Undèn, and Elofsson 2001), respondents’ frame of 

reference (Bailis, Segall, and Chipperfield 2003; Krause and Jay 1994), and health 

perceptions across cultures and social groups (Jylhä et al. 1998). In terms of statistical 

modeling, however, these differences are of little importance. For illustrative purposes, I 

adopt the Health and Retirement Study version: “Would you say your health is excellent, 

very good, good, fair, or poor?” (HRS 1992). Three important characteristics of SRH are 

relevant to its statistical analysis as a dependent variable: 

1. Discrete – while self-rated health is assumed to represent a latent (continuous) 

construct, it is typically measured discretely on an ordinal scale (e.g., Poor-Fair-

Good-Very good-Excellent). 

2. Reversible – fortunately, and despite our long-term mortal expectation, health can 

in fact improve rather than simply decline over the life course. That is, in terms of 

measurement, the transition from each category of SRH to any other category is 

permissible. Transitions between categories over time do not have to be 

consecutive either, so that a hypothetical person can transition from having “Very 

Good” to “Poor” health without crossing categories in between. Note that this is 

not a matter of unobservable data but part of the natural process of change in 

health. 

3. Asymmetric/monotonic – this property separates SRH from a Likert-type scale 

(e.g., agree-neutral-disagree) in that it has no meaningful central category of 



 5 

reference. Scale asymmetry is not to be confused with empirical asymmetry, 

whereby the distribution of SRH is often skewed, at least in the general 

population, as majority of people are relatively healthy throughout most of their 

lives. Skewness in the distribution of SRH, of course, also has implications to 

statistical analyses (e.g., methods based on normal approximation) aside from 

scale asymmetry. 

The inherent characteristics of SRH should be taken into consideration when constructing 

statistical models of health over time. While cross-sectional studies generally seem to 

adhere to these attributes, longitudinal studies are far from showing convergence in 

methodology. The following section discusses methodological concerns in cross-

sectional models of ordinal outcomes, many of which carry over to the longitudinal 

context. 

 

Modeling Ordinal Outcomes in Cross-Sectional Studies 

Ordinal outcomes are often modeled using methods designed for nominal or interval 

scales, with the former ignoring any information given by the ordering of the categories 

and the latter treating them as arbitrarily (most often evenly) spaced. When applied to 

ordinal variables, multinomial models tend to have less power than ordinal methods in 

detecting associations (Agresti 2010:3), as they involve additional parameters and, 

consequently, fewer degrees of freedom in statistical inference. More often, however, 

researchers choose to collapse categories or simply dichotomize the outcome variable. 

When categories represent arbitrary cut-points of an unobserved continuous scale, as in 
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the case of SRH, then reducing the number of categories can result in bias and loss of 

power (Ananth and Kleinbaum 1997; Agresti 2010:38). 

 Methods designed for continuous data (i.e., OLS1 regression and its derivatives) 

may perform better than nominal models with regard to SRH, but they too carry notable 

shortcomings. Primarily, these methods assign a score to each category assuming some 

meaningful difference-value between them. For example, by using the standard scoring 

of SRH (ranging from 1 to 5) we implicitly assume that moving from “Excellent” to 

“Very Good” health has an equivalent meaning as moving from “Fair” to “Poor” health, 

as the intervals between all categories are the same. While the choice of scores is not 

limited to linearity (e.g., one can choose {1, 2, 4, 7, 8} rather than 1-5), this choice 

nonetheless requires justification and typically introduces a degree of arbitrariness to the 

outcome. OLS models with ordinal outcomes are also known to suffer from floor and 

ceiling effects, leading to biased parameter estimates that exceed the original scale, and 

causing residuals to be correlated with predictor variables (Agresti 2010:5). These in turn 

may result in “false-positive” detection of interaction terms between covariates. 

 Generalized linear models (GLM) extend ordinary regression models by allowing 

the dependent variable to follow a distribution other than normal and the link function to 

be other than identity. A linear combination of predictors now relates to some function of 

the mean (e.g., logit, probit, etc.) rather than to the mean itself. Most commonly, in the 

case of ordinal models, these correspond to the multinomial distribution (a multivariate 

GLM) and the logit link. Fullerton (2009) provides a thorough typology of ordered 

logistic models based on the choice of numerator and denominator in the logit link and 

the proportional odds assumption (i.e., that regression coefficients are constant across 
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levels of SRH). According to the typology, the cumulative logit link function models the 

probability of being at or below each category relative to all categories above it. The 

cumulative approach is often justified by assuming that an unobserved continuous 

variable underlies the observed categorical variable (Agresti 2010:53). Alternatively, the 

stage (also known as continuation-ratio) approach models the probability of being in a 

stage (category) compared to stages above it. In this approach one must pass through 

categories successively and irreversibly, such as stages in educational attainment. Finally, 

the adjacent-category approach compares a single category to another category of 

choice (strictly, this method is nominal rather than ordered) and is most useful when a 

meaningful midpoint exists for the outcome (e.g., an “agree-neutral-disagree” 

formulation). Table 1 summarizes the corresponding logit functions for each of the three 

model types. 

 

Table 1: logit functions for common ordinal models, with J-1 cut-points for J categories. 
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a In the adjacent-logit model j’ is the reference category. 

 

A major advantage of the cumulative-logit approach, given that the proportional 

odds assumption holds, is that the original latent variable directly relates to the linear 

predictor (i.e., βX=*][YE ). Contrary to the OLS model, regression coefficients derived 

from the cumulative-logit model are invariant to the choice of response categories 
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(McCullagh 1980; Agresti 2010:56). Thus, by using an ordinal model we rid ourselves 

from choosing – and having to justify – arbitrary values for the outcome variable. 

Given the characteristics of SRH (monotonic scale, arbitrary cut-points, 

representing a latent construct), the cumulative-logit approach seems to fit most among 

the GLM link functions listed above. This is the approach I adopt for the rest of the paper 

and extend to the longitudinal context. 

 

Longitudinal Models for Ordinal Outcomes 

Repeated measures of individuals’ health status over time are generally treated within one 

of two major frameworks: multilevel models (MLM hereafter; also known as HLM for 

hierarchical linear models), and latent growth models (LGM) stemming from the SEM 

tradition (Meredith and Tisak 1990). While the following discussion emphasizes the 

MLM specification, equivalent models can generally be implemented under the LGM 

framework. As others have noted (e.g., Jackson 2010), the distinction between the two 

frameworks is becoming increasingly vague and software-dependent with respect to 

longitudinal models and similar methodological concerns apply. 

Under the MLM framework, SRH measurements are considered nested 

observations within individuals (level-1), while the individuals are considered 

independent, randomly selected blocks (level-2). The two-level model can be broken 

down into two conceptual stages corresponding to each model level: a) estimating growth 

parameters (intercept, slope, etc.) for each subject to summarize individual SRH 

trajectories; b) making inference about variation in growth parameters between subjects. 
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Thus, SRH is the level-1 dependent variable and growth parameters (e.g., random 

intercept, random slope) are the level-2 dependent variables. 

In the same way that GLM extend OLS regression to discrete outcomes, 

generalized linear mixed models (GLMM) extend linear MLM. However, since there is 

more than one random variable in the multilevel model, assumptions are now made 

separately at each model level (e.g., choosing a random distribution and link function for 

each random variable). A two-level GLMM with random-intercept and random-slope 

follows2: 

Level-1: ∑++=⋅
p

pitpiitiiit ZTg γγγ 10)(     (1) 

Level-2: i
k

kiki uX 00000 ++= ∑ββγ      (2) 

i
m

mimi uX 11101 ++= ∑ββγ      (3) 

0ppi βγ =        (4) 

where, in equation (1), itg )(⋅  is a function of individual i’s expected outcome at time t 

(conditional on the random effects), γ0i and γ1i are random effects (i.e., growth 

parameters), Tit is time measurement for individual i on occasion t, and γpi are level-1 

fixed-effects corresponding to p time-varying covariates, Zpit. Equations (2) and (3) can 

be interpreted as in simple regression models, with random effects regressed on person-

level covariates (Xi) that are fixed across measurements (e.g., race and gender). Equation 

(4) specifies additional fixed effects that can enter the model with time-varying covariates 

at level-1. 

Of more interest is level-1, where the choice of a link function, )(⋅g , and a 

random distribution for SRH conditional on random effects, allows us to generalize the 
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multilevel model to discrete outcomes. When )(⋅g  is the identity link and the conditional 

probability distribution is assumed normal, we end up with the conventional linear MLM. 

Instead, choosing the cumulative-logit link function and a multinomial distribution for the 

level-1 outcome leads us to a GLMM. Regardless of the assumptions made at level-1, it 

is common to operate under the tractable assumption that level-2 random effects follow a 

multivariate (here bivariate) normal distribution. Even when the random effects 

distribution is misspecified, consistent and asymptotically normal parameter estimates 

can be obtained for linear multilevel models (Verbeke and Lesaffre 1997). However, with 

GLMM, misspecification of random effects may have more severe consequences 

(Hartford and Davidian 2000; Litiere, Alonso, and Molenberghs 2007). 

Next, I present three competing longitudinal models for ordinal outcomes: (A) 

linear (normal) multilevel model; (B) conditional ordered-logit model; (C) marginal 

ordered-logit model with correlated observations. After introducing the models, I discuss 

methodological concerns that relate to all three of them. 

 

Model A: Linear Multilevel 

The linear multilevel model is commonly used in the literature for modeling longitudinal 

outcomes; it assumes the identity link function and normally distributed error terms in 

Equation (1), and a bivariate normal distribution for the random effects in Equations (2) 

and (3). With respect to SRH, the random-intercept suggests that individuals vary in their 

initial health status, and the random-slope that they also vary in the rate of change in 

health over time. 
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 Applying the linear multilevel model to non-normal outcomes may bias our 

inference on estimated regression coefficients. ML estimates of fixed effects are 

asymptotically normal even when the error-terms are non-normal, although departure 

from normality requires larger sample sizes. Estimates of standard errors, on the other 

hand, may be biased downwards, inflating test statistics and providing a false sense of 

confidence in hypothesis tests. Thus, robust inference procedures are needed in order to 

draw correct conclusions with non-normal data. In the case of single parameter tests (e.g., 

the Wald test), this generally corresponds to Huber-White robust standard errors (Maas & 

Hox 2004). Tests for overall model fit also need to be adjusted for departure from 

normality. For models estimated using ML, Satorra and Bentler (1994) suggested a 

scaling factor for model chi-square statistics (known as the SB-scaled chi square test 

statistic3). 

 

Model B: Conditional Ordered-Logit 

As previously mentioned, GLMM extend standard GLM to include random effects as 

well as fixed effects in the linear combination of predictors. Equation (1) can be modified 

to incorporate a variety of link functions and probability distributions (as far as they can 

be estimated) to describe the outcome variable at hand. Given the characteristics of SRH, 

the cumulative-logit function and the multinomial distribution make the natural choice 

for level-1 in the multilevel model. Thus, we can substitute Equation (1) with:  

∑++=







>
≤

p
pitpiitii

it

it ZT
jY
jYLog γγγ 10)Pr(
)Pr(    (5) 

In addition, the intercept term, β00, in equation (2) is substituted by a separate 

intercept, βj00, for each of the J SRH categories. The ordinal model estimates J-1 logits 
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concurrently, corresponding to the number of cut-points between SRH categories. Note 

that this specification takes the proportional odds form, assuming that fixed-effects are 

constant across all categories of SRH. Since growth parameters are considered latent 

variables, they are assumed to follow a bivariate normal distribution just as in the linear 

multilevel model. 

Model B is termed conditional to emphasize that its fixed effects are interpreted 

conditional on random effects. In other words, effects are person-specific rather than 

population-averaged (this is in fact true for Model A too). When the link function is 

nonlinear, such as the logit link, and when considerable variation exists between 

individuals’ health trajectories, conditional effects differ in magnitude from marginal 

(i.e., population-averaged) effects. Since the attenuation of marginal effects is 

accompanied by attenuation of standard errors, inferential statistics in both models is 

generally similar (Agresti 2002:501). However, conditional and marginal models differ 

substantially in interpretation, as discussed next. 

 

Model C: Marginal Ordered-Logit 

Marginal models are distinctly different from the previous models, as they are not truly 

multilevel and do not include random effects. In fact, they are specified as conventional 

GLM with the exception of relaxing the assumption of independence of observations. 

This type of model is termed marginal, as opposed to conditional, as it models the 

marginal distribution of Yit averaged over all individuals. A general specification of a 

marginal linear model using the cumulative logit link is as follows: 

 it
m

mim
k

kikj
it

it TXX
jY
jY
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


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


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Equation (6), however, does not explicitly reflect potential dependence among 

observations within clusters. Modeling the data under the assumption of complete 

independence would still result in unbiased regression coefficient estimates, but will 

likely produce underestimated standard errors (which in turn affect inference). 

Technically, specifying the correlation structure of within-cluster observations 

depends on the choice of software package and method of estimation. One approach is 

using ML estimation with robust (sandwich) estimators for standard errors that account 

for within-person clustering (Rabe-Hesketh and Skrondal 2008:300). Alternatively, when 

feasible, quasi-likelihood estimation (i.e., the GEE method) can be used by specifying a 

working correlation matrix that captures the within-cluster dependence (Agresti 

2010:268). The method of estimation has important implications for missing data: while 

ML estimation generally relies on the assumption that observations are missing at random 

(MAR), quasi-likelihood methods make the stricter assumption that data are missing 

completely at random (MCAR) (Agresti 2002:501). 

 

Marginal and Conditional Means in GLMM 

Most importantly, marginal and conditional models differ in the expected values they 

produce and their substantive interpretation. As the name implies, conditional models 

yield person-specific expected values conditional on both fixed and random effects. For 

SRH, these are interpreted as the expected health trajectory for a person located at a 

specific place in the distribution of random effects (i.e., with below or above average 

initial health status and below or above average rate of change in health status). Marginal 

models, on the other hand, give rise to population-averaged trajectories conditional on 
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fixed effects alone. In effect, they average out individual heterogeneity in SRH. The 

difference between the two model types is made clear when written explicitly. 

Consider a general GLM for longitudinal data4: 

( ) βµ 'ititg x=       (7) 

where xit is a vector of covariate and β a vector of coefficients. The marginal mean for an 

individual with particular covariate values at time t, is simply: 

[ ] ( )βµ '1
ititit gYE x−==     (8) 

Now, consider a GLMM with additional random effects (Agresti 2002, 492): 

( ) iitit
C
itg uzx '' += βµ      (9) 

where zit is a vector of covariates and ui a vector of random effects. Then, the conditional 

mean, C
itµ , is given by: 

[ ] ( )iititiit
C
it gYE uzxu ''| 1 +== − βµ     (10) 

And the marginal mean, M
itµ , is: 

[ ] ( )[ ] ( ) ( )C
itiiiititiitit

M
it hdfgYEEYE µβµ =+=== ∫ − uuuzxuU )(''| 1  (11) 

The last equation clearly shows that in a GLMM, the marginal and conditional means are 

not equivalent and that the former is a function of the latter (specifically, averaging over 

the individual heterogeneity reflected in random effects). 

Note that when g is the identity link, the conditional mean becomes an additive 

function of fixed and random effects (Ritz and Spiegelman 2004), which implies a special 

case where: 

( )[ ] [ ] [ ] βββµ '''''| itiititiititiit
M
it EEYEE xuzxuzxu UU =+=+==   (12) 
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Thus, in the linear case, when random effects are at their zero means, we have that 

βµµ 'it
M
it

C
it x== . However, this is generally not the case with other link functions, 

including as the logit. 

 

Additional Considerations with Longitudinal Models 

Statistical modeling requires making assumptions and models for longitudinal data are no 

different. However, the empirical literature is often mute with respect to many of the 

assumptions involved in longitudinal data analysis, regardless of the scale of 

measurement (continuous/ordinal) or framework (MLM/LGM) used. Whether implicitly 

or explicitly disclosed, several aspects should be considered systematically throughout 

the modeling process: 

1) Probability distributions and link functions. As noted above, in the multilevel 

context probability distributions and link functions are chosen separately at each 

model level. Since growth parameters in level-2 are generally considered latent 

variables, a common choice is the multivariate normal distribution along with the 

canonical identity link (albeit other possibilities exist). Level-1 assumptions can 

more directly accommodate the observed outcome’s (e.g., SRH for individual i at 

time t) characteristics. As with GLM for cross-sectional data, one can choose a 

normal distribution and the identity link for a conventional continuous 

interpretation; alternatively, the characteristics of SRH can be addressed explicitly 

by choosing a multinomial distribution and the cumulative-logit link. 

2) Functional form of the dependent variable trajectory. Rather than imposing an 

arbitrary functional form (linear, quadratic, cubic, piecewise, etc.) on individuals’ 
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health trajectories over time, this choice should stem either from theory or from 

empirical results. Under the MLM framework, random effects can be tested 

sequentially for best model fit and included or omitted as necessary. 

Discontinuities can be tested using piecewise models when theory dictates such 

effects are plausible (for example, an abrupt deterioration in health following a 

stressful event). Similarly, under the LGM framework, one can extend beyond 

linear trajectories by adding factors that correspond to higher polynomials and test 

model fit. A more parsimonious alternative with LGM is the unspecified two-

factor model (Duncan, Duncan, and Strycker 2006:31), which includes a factor 

for the intercept, specified as usual, and a second latent factor with only the first 

and second loadings fixed while any additional loadings are estimated freely. 

Since loadings on the second factor are now unrestricted to linearity, the resulting 

curve may follow more complex forms. 

3) Level-1 variance-covariance matrix. Observations nested within individuals are 

unlikely to be independent of each other and the longitudinal model should 

account for significant departure from independence. For example, repeated SRH 

measurements over time are likely to be correlated within-person. The variance of 

SRH is also likely to increase over time, as individuals in the sample age and 

health disparities accumulate. The inclusion of person-specific random effects 

explicitly allows for within-person heteroscedasticity and autocorrelation (Singer 

and Willet 2003:84). This is evident in the composite error term, when equations 

(2) and (3) are substituted into equation (1). If within-person measurements are 
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still hypothesized to be correlated conditional on random effects, a more complex 

variance-covariance structure for level-1 can be specified. 

4) Level-2 variance-covariance matrix. In growth curve models, variance 

components are of interest, as they indicate the amount of heterogeneity in 

individuals’ smoothed growth trajectories, conditional on other covariates (Singer 

& Willet 2003:93). The covariance between growth parameters can also be 

estimated and often has a meaningful interpretation. For example, a significant 

negative correlation between SRH random-intercept and random-slope may 

indicate that respondents with high initial health status tend to show greater 

decline in health over time. When few growth parameters are included in the 

model the choice of an unstructured covariance matrix results in estimating few 

additional parameters. Depending on theory or empirical findings, especially with 

more complex functional forms of health trajectories, it is possible to impose 

restrictions on the covariance structure such as independence of growth 

parameters or equality in variance components. 

5) Time metric. Researchers often use a variable indicating data wave as the 

temporal covariate in the model. Doing so implicitly assumes a discrete metric of 

time, where subjects are measured at exactly the same intervals. However, in 

large surveys it is typically the case that measurement intervals vary significantly 

between respondents. If more refined data are available, such as interview dates at 

each wave, a “continuous” measure of time may be calculated. Variables other 

than data wave, such as respondent’s age, may be used as temporal measures in 
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the model. In general, the MLM framework better lends itself to modeling 

asynchronous measurements compared to the LGM framework (Jackson 2010). 

6) Model Estimation. Estimation can be quite difficult with longitudinal data, 

especially with nonlinear models. For conditional models, Maximum Likelihood 

methods are generally used and are known to have several desirable properties, 

such as consistency and asymptotic normality (Singer and Willett 2003:65). In 

addition, ML estimates are unbiased even in presence of missing values as long as 

they are missing at random (Schafer and Graham 2002). However, when extended 

to include nonlinear link functions and non-normal distributions, the likelihood 

function cannot be evaluated directly and numerical methods are used for 

approximation. This process can become computationally cumbersome even with 

a moderate sample size. Alternatively, marginal models average the random 

effects across all individuals and are much more efficient in computation time. 

These models can be estimated using quasi-likelihood methods (using the GEE 

approach) without making explicit assumptions on the distribution of random 

effects (Zeger and Liang 1986). However, quasi-likelihood methods require the 

stricter assumption that data are missing completely at random (MCAR) (Agresti 

2010:312). Furthermore, the interpretation of marginal models is fundamentally 

different from that of conditional models, as I illustrate in the next section. In 

general, marginal means can be extracted from conditional models, as the latter 

contain more information than do marginal models (Agresti 2002:500). 

7) Inference on fixed and random effects. Single parameter tests for fixed effects in 

multilevel models are generally comparable to conventional regression analysis. 
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When based on ML estimation these test statistics are asymptotically normal 

(such as the Wald test). Likelihood ratio tests can be used for testing random 

effects or overall model fit, at least with nested models. When using linear 

MLM/LGM with discrete outcomes, inference should be adjusted for departure 

from non-normality. Inference on random effects is more elusive and considered 

highly sensitive to imbalanced designs (Singer and Willett 2003:73). 

Finally, a word about the choice between MLM and LGM is in order. Both frameworks 

permit the modeling of longitudinal ordinal outcomes, but may differ in flexibility. For 

example, MLM may be preferable over LGM when dealing with an asynchronous study 

design, where respondents are not measured concurrently or when there is particular 

interest in modeling the impact of specific life events that are experienced by individuals 

at different times. Conversely, LGM allow for more flexible error-structures and for 

elaborate models where growth factors serve as both dependent and independent 

variables. When trajectories cannot be easily approximated by a known mathematical 

function, LGM has the benefit of using unspecified growth factors to estimate trajectories 

freely. A more comprehensive discussion of the differences between MLM and LGM is 

available elsewhere (Ghisletta and Lindenberger 2004). As mentioned earlier, these 

differences are somewhat software dependent and may diminish even further in the future 

(Jackson 2010). 

 

Example from the Health and Retirement Study 

The cumulative advantage hypothesis suggests that health disparities between 

socioeconomic (SES) groups will widen over time and especially at old age. Indeed, 
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multiple studies have found diverging SRH trajectories by education, income, and 

race/ethnicity with age (Lynch 2003; Mirowsky and Ross 2008; Ross and Wu 1996; 

Shuey and Willson 2008; Willson, Shuey, and Elder 2007). In order to illustrate models 

A-C, I use longitudinal data from the Health and Retirement Study (RAND 2011)5 to 

estimate SRH trajectories by education (<HS = less than high school; HS/GED = high 

school diploma or GED; >HS = some college or higher), net of other socio-demographic 

factors (age at baseline, gender, race, and Hispanic origin). For the sake of simplicity, all 

analyses in this section are unweighted and unadjusted for the Health and Retirement 

Study’s complex survey design. 

The Health and Retirement Study is a nationally representative, multi-stage 

probability sample of non-institutionalized older adults in the contiguous U.S. and their 

spouses. Respondents of the first birth cohort (1931-1941) were first surveyed in 1992 

and then repeatedly at two-year intervals (the current sample includes nine waves of data 

up to 2008). Sample descriptive statistics are shown in Table 2. 

[Table 2 here] 

Being impartial with respect to the functional form of SRH over time, I first 

estimated an unspecified two-factor LGM (not shown here), which suggested that 

individual SRH progresses linearly over time. Thus, a random-intercept and random-

slope model seems appropriate (a test of the random-slope model against a simpler 

random-intercept model also proved significant). Four models were estimated6 for the 

sample data: (A1) linear multilevel model; (A2) linear multilevel model with robust 

standard errors; (B) conditional ordered-logit; (C) marginal ordered-logit. Inference on 
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fixed effects, if not coefficient estimates directly, can then be compared across all 

models. Results are summarized in Table 3. 

[Table 3 here] 

 As expected, coefficient estimates are identical across models A1 and A2, with 

only standard errors differing as reflected in the associated p-values. In both models, age 

at baseline, Hispanic origin, and race (self-identified as black or other), but not gender, 

have significant negative effects on initial SRH. Relative to the reference category (less 

than high school education), having a high school diploma or GED is associated with .59 

higher SRH at baseline; having some college education or higher is associated with .99 

higher SRH at baseline. 

For the average person, with mean initial SRH and a mean rate of change, SRH is 

expected to decline linearly over time at a rate of .033 per year. While the effects of age, 

gender, race (black only), and education on the rate of change in SRH are statistically 

significant, due to the large sample size, they are generally quite small even as they 

accumulate over several years (see Figure 1a). The effects of education on the slope of 

SRH suggest, perhaps, a slight convergence over time, rather than divergence. Note that 

the effect of Hispanic origin on the slope of SRH is slightly below the .05 level in Model 

A1, but slightly above the significance level in Model A2 (.04 and 058, respectively). 

 Coefficient estimated cannot be compared directly between the linear MLM 

(model A) and the nonlinear models (Models B and C). However, they can be compared 

with respect to substantive conclusions such as direction and significance of fixed effects, 

and, perhaps more importantly, with respect to predicted means and probabilities. 
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 Fixed effects on the intercept of SRH (i.e., initial health status) in Model B and C 

resemble those of Models A1 and A2 in both statistical significance and direction. This is 

not the case, however, with respect to fixed effects on the slope of SRH. For example, the 

effect of age at baseline on the slope of SRH is positive and significant in Models A1, 

A2, and C, but negative and non-significant in Model B. Nevertheless, the effect is 

negligible in terms of magnitude and substantive interpretation, and may show 

significance simply due to the large sample size. Thus, it is better to interpret effects 

across models according to their theoretical and substantive importance, rather than 

simply based on significance level alone. 

 According to Model A1, women’s SRH declines slower than does the slope for 

men. However, net of other factors, the expected gender difference in SRH amounts to a 

mere .064 after 16 years of follow-up. Similarly, in Model B, the probability of women 

having “Very good” or “Excellent” health is 2.5% higher for women relative to men after 

16 years from baseline. Interestingly, the same coefficient is an order of magnitude 

smaller in Model C (compared to Model B) and is not statistically significant. This 

suggests that, at the population level, we cannot conclude that a gender difference exists 

in the change of SRH over time. 

[Figure 1 here] 

 Going back to the original question of SRH trajectories by education, Figure 1 

shows the predicted trajectories for Models A1 and B. Figure 1a suggests that the average 

non-Hispanic white male with less than high school, with mean initial SRH and mean 

rate of change, is expected to report an SRH score of 2.99 (“Good”) at age 55 and a score 

of 2.46 (between “Good” and “Fair”) 16 years later. A similar respondent with some 
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college education or higher, is expected to report a score of 3.98 at baseline and 3.30 at 

the end of the follow-up period. Consistently in between these two trajectories is the high 

school graduate. It is clear that while the three individuals’ health status is stratified by 

education at baseline, the difference between individuals (assuming categories SRH are 

evenly spread apart) remains about the same throughout the study period. 

 Figure 1b tells a similar story by showing the predicted probability of having 

“Very good” or “Excellent” health for comparable individuals. At age 55, there is a .86 

probability for a highly educated non-Hispanic white male to report one of those higher 

SRH categories, compared to only .19 for a similar person with less than high school 

education. Sixteen years later these probabilities decline to .39 and .05, respectively. 

 Due to the nonlinearity of Model B, it is difficult to detect visually whether the 

slopes of SRH significantly and substantively differ by education. This is one apparent 

shortcoming relative to the linear model. On the other hand, results from Model B are 

more readily interpretable relative to Model A, in which predicted SRH scores do not 

necessarily match distinct categories (i.e., what does a predicted score of 2.46 actually 

mean?). 

[Figure 2 here] 

 Figure 2 illustrates the fundamental difference between conditional (person-

specific) and marginal (population-averaged) models. Figure 2a shows the predicted 

probabilities of the different SRH category at each wave for Model B. These probabilities 

are conditional on fixed and random effects. Thus, Figure 2a can be interpreted as the 

“prognosis” of a non-Hispanic, white male, aged 55 at baseline and who graduated from 

high school, whose initial SRH and rate of change are average or typical among people 
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like him. Such a person is most likely (89%) to report “Good” or “Very good” health at 

age 55, with a low chance of being in “Excellent” health (7%) and virtually no chance of 

reporting “Poor” health (.27%). 

 This is in sharp contrast to the picture painted in Figure 2b. Model C predicts that, 

for the HRS cohort at large, about 4 percent of non-Hispanic white, male high school 

graduates report “Poor” health at age 55; Twenty percent are predicted to report 

“Excellent” health. Both of these probabilities are significantly higher than the individual 

prediction derived from Model B, for a person of “typical” baseline health status and 

“typical” rate of change in health. 

  Taken together, these results suggest that the choice between conditional and 

marginal models should largely be driven by the researcher’s substantive interests. The 

choice between linear and nonlinear models, on the other hand, is less clear. While both 

models resulted in similar (though not identical) substantive conclusions with the Health 

and Retirement Study sample, it is difficult to say which is preferable. Unfortunately, 

there is no simple test statistic or procedure to choose between models based on different 

probability distributions. Instead, simulation can be used to explore which model is 

superior with respect to a limited set of criteria (e.g., statistical power). 

 

Model Performance in Simulation 

Model comparison is a critical aspect of statistical modeling in sociological research 

(Weakliem 2004). Selection between competing models is often based on goodness-of-fit 

statistics such as R2; for complex nested models, under maximum likelihood estimation, 

relative goodness-of-fit can be compared using likelihood ratio tests. With non-nested 
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complex models, selection can prove even more difficult as model fit statistics do not 

naturally arise to allow formal tests. Nevertheless, several information criteria have been 

developed for such cases. These include AIC and BIC, differing in their penalty for 

additional model parameters (Singer and Willet 2003:120), with the former oriented 

toward predictive accuracy and the latter toward explanatory goodness-of-fit (Shmueli 

2010). Unfortunately, all of those methods share a common dependency on the model 

likelihood function. 

By contrast, the models reviewed in this paper are based on different probability 

distributions (e.g., multinomial, normal); in other cases, such as the marginal cumulative-

logit model estimated using GEE, the likelihood is not evaluated at all. Conventional 

approaches to model selection abandon us and alternative benchmarks are needed. 

In what follows, I rely on randomly generated data with known population 

parameters to compare statistical power in detecting fixed-effects across Models A-C7. 

With respect to regression coefficients, power can be defined as the probability of 

observing a statistically significant coefficient estimate when the true coefficient differs 

from zero (given some α level). With complex models, power calculations can easily 

become intractable and simulation is preferred over analytic approaches. Furthermore, 

simulation provides an ideal case where data are completely balanced and there are no 

missing values. In the context of simulation, power can be obtained by drawing multiple 

random samples from a specified population and repeatedly estimating the various 

models. Power is then estimated as the proportion of samples in which a particular test 

was significant. 
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Since SRH is assumed to represent a latent variable, a continuous outcome was 

generated for each subject i at each time t from a normal distribution. Random effects 

(intercept and slope) were drawn for each subject i from a bivariate-normal distribution 

with a modest negative correlation. Two uncorrelated predictor variables, one 

dichotomous and one continuous, were incorporated at level-2 (with no time-varying 

covariates at level-1). The true population model (see Table 4 for a list of population 

parameters) in composite form is: 

( )( ) ( )ititiiitiiiiit TuuTXXXXY εββββββ ++++++++= 102121111020210100  (13) 

The outcome variable was then categorized using four levels and four models are 

estimated: Models A-C, as specified above, and Model D, in which the outcome is further 

dichotomized. Model D follows the same specification as does Model C in Equation 6, 

but estimated for a dichotomous outcome using the GEE method. 

[Table 4 here] 

 Since longitudinal studies are characterized by repeated measures for each person, 

the question of sample size becomes more complicated than in cross-sectional studies. 

One has to consider the number of subjects and the number of observations per subject. 

For this reason, I constructed power surfaces (rather than power curves) in Figures 3-5, 

with multiple combinations of the two factors. The number of individuals (100, 200, and 

300) is plotted on the horizontal axis; the number of observations per subject varies from 

three to five and is plotted on the vertical axis. Since all models were reasonably 

powerful with respect to fixed effects on the random-intercept (i.e., β01 and β02) they are 

not shown here. Instead, Figures 3-5 show power plots for fixed effects on the random-

slope (i.e., β10, β11 and β12)8. 
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[Figure 3-5 here] 

 Figure 3 suggests that the models are generally comparable in performance with 

respect to β10, with some advantage to Model A (linear MLM). Recall that β10 

corresponds to the average effect of time on the outcome variable (person-specific effect 

in Models A & B, and population averaged effect in Models C & D) when other level-2 

covariates are set to zero. Furthermore, power increases both as a function of the number 

of individuals and the number of observations per individual (this is reflected in darker 

shades directed toward the top-right corner of each square plot). 

Figures 4 & 5, describing results for β11 and β12 (the fixed-effects on the rate of 

change over time), reveal some marked differences between the models. Model D, the 

marginal logit with dichotomous outcome, has practically no power at all, regardless of 

sample size. The ordinal Models B & C perform better than the linear MLM (Model A). 

Overall, Model B performs better than any of the other models and is preferable with 

respect to statistical power. Note that in Figures 4 & 5 power tends to increase as the 

number of subjects increases, but not as much as a function of the number observations 

per subject (especially in Model A). This result may not be surprising considering that 

β11 and β12 relate to level-2 covariates that remain fixed within-person across repeated 

measurements. 

 

Discussion 

Longitudinal data are increasingly available and elaborate statistical methods are needed 

to fully utilize them (for example, ten waves of panel data are currently available for the 

original Health and Retirement Study cohort). Regretfully, researchers often opt for 
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cross-sectional analyses or rely on difference scores between two waves while discarding 

enormous amounts of additional data. Multilevel modeling offers a powerful framework 

for handling the full range of data across multiple waves, and is particularly useful for 

describing individual trajectories over time. However, linear multilevel models may not 

be ideal for all outcomes. Studies of self-rated health commonly neglect the measure’s 

unique characteristics and instead rely on assigning numerical scores to ordered 

categories. Instead, generalizations of the multilevel model to discrete outcomes 

constitute a viable alternative. 

Since sociologists and other social scientists are generally concerned with 

explanation over prediction or data reduction (Shmueli 2010), I chose to emphasize 

substantive interpretation and statistical power when comparing models for longitudinal 

data. Competing longitudinal models for SRH were juxtaposed along two dimensions: 

linear versus nonlinear and conditional versus marginal. Results from simulation suggest 

that conditional ordered-logit models are generally more powerful than linear (normal) 

multilevel models in detecting fixed effects on growth parameters (in particular, the 

random-slope). However, while the conditional ordered-logit model outperforms all other 

models, it is also the most computationally cumbersome. 

By contrast, marginal ordered-logit models require little computation time but still 

perform reasonably well with respect to statistical power. However, predicted means 

derived from marginal models refer to population-averages. With nonlinear models, 

marginal and conditional means can show marked differences. In this regard, marginal 

models are unfit for inference on individual (person-specific) trajectories in much the 

same way that results from repeated cross-sections are. Since every marginal model 
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stems, at least implicitly, from a particular conditional model (Lee and Nelder 2004), 

marginal means and trajectories can generally be inferred from conditional models (but 

not the opposite). In addition, estimation of marginal models using quasi-likelihood 

methods is less robust to missing data and assumes that data are missing completely at 

random (MCAR). 

Conditional models are better fit for describing and making inferences about 

individual trajectories over time. However, interpretation should be conducted with care: 

predicted probabilities or means, such as SRH scores, are conditional on person-specific 

effects (i.e., random intercept and slope). When the random components are set to zero, 

the interpretation of trajectories generally applies to a “typical” individual with mean 

initial SRH and mean rate of change in SRH (conditional on other covariates). 

Choosing between the linear and ordered-logit conditional models is more 

difficult. Clearly, the linear model is easier to estimate and readily interpretable. 

However, it can potentially suffer from floor and ceiling effects and has less statistical 

power compared to its ordinal counterpart. At the same time, I find that in the case of 

SRH, as illustrated with a large sample from the Health and Retirement Study, it leads to 

similar substantive conclusions as does the ordered-logit conditional model. Its main 

shortcoming is that predicted SRH scores have no immediate interpretation, as do 

predicted probabilities in the ordered-logit model. 

As an aside, it is worth making a note on the practice of dichotomizing ordinal 

variables. Previous studies have suggested that dichotomizing SRH results in minimal 

reduction in efficiency (e.g., Manor, Matthews, and Power 2000); results in this study 
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point to the contrary. The simulation results clearly show that collapsing categories, at 

least with the marginal-logit model, leads to a serious loss of power and is ill-advised. 

Based on findings from this study, I propose the following guidelines for 

modeling self-rated health and similar ordinal outcomes in longitudinal studies (while 

some may seem trivial they are still worth repeating): 

1. Use all of your data. Don’t discard valuable information for the sake of simpler 

methods, although simpler methods may be preferable given the same use of data. 

2. Let substantive interpretation lead the choice between marginal (population-

averaged) and conditional (person-specific) models. 

3. When estimating marginal models with missing data use maximum likelihood 

estimation. Alternatively, estimate a corresponding conditional model using 

maximum likelihood and derive from it the marginal means. 

4. When comparing models with different probability distributions (e.g., normal, 

binomial/multinomial), translate effects to predicted means and probabilities 

rather than rely on statistical significance alone. 

5. If power is an issue, use a conditional ordered-logit model over a linear multilevel 

model. Don’t dichotomize your outcome. 

6. To save computation time, start with a linear multilevel model for exploratory to 

perfect your model specification. Second, try robust inference to account for non-

normality. Finally, try the more complex ordered-logit model. 

In conclusion, I would like to echo Alan Agresti (2010:5) in commenting that “strict 

adherence to operations that utilize only the ordering in ordinal scales limits the scope of 

useful methodology.” That is, despite the superiority of some methods over others in 



 31 

ideal scenarios, real data often confront us with complex circumstances – be it missing 

data, complex survey designs, or model misspecification – and no single model should be 

trusted blindly. 

 

Notes

                                                 
1 Here and throughout the paper OLS is used colloquially to mean simple and multiple regression models 

with normally distributed errors, and does not refer strictly to the least-squares estimation method. 

2 Although the model can be extended to include additional random effects, equations 1-4 specify the more 

common random-intercept and random-slope model. 

3 Note that the difference of two SB-scaled chi-square statistics does not itself follow a chi-square 

distribution, and has to be adjusted in order to properly conduct the chi-square difference test for nested 

models (see Satorra & Bentler 2001). 

4 Strictly, g is a monotonic differentiable function and the response variable follows a distribution from the 

natural exponential family (Agresti 2002:116). 

5 The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number 

NIA U01AG009740) and is conducted by the University of Michigan. 

6 All models were estimated in Stata: Model A1 using the xtmixed command; Model A2 using xtmixed 

with robust standard errors; Model B using gllamm, a user-written program (Rabe-Hesketh, Skrondal, and 

Pickles 2004); and Model C using ologit with robust standard errors for clustered observations (using 

sandwich estimator). Computation time for Model B was exceptionally long, taking nearly 26 hours on a 

standard desktop PC. By contrast, all other models were estimated in less than a minute. 

7 Simulation was conducted in Stata; Full code (adapted from Feiveson 2009) is available in supplementary 

material. 

8 At three observations per subject, a few iterations of Model A failed to obtain standard-errors; Model D 

failed to converge on a few iterations with 100 subjects and five observations per subject. These estimation 

errors, however, have only minor effects on results shown in Figures 3-5. 
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Table 2: Sample descriptive statistics, Health and Retirement Study

Variable N Mean/Proportion SD

Age (at baseline) 12,651 55.26 5.67

Female 12,652 0.54 0.50

Hispanic 12,642 0.09 0.29

White 12,652 0.80 0.40

Black 12,652 0.17 0.37

Other race 12,652 0.04 0.19

Education

Less than high school 12,652 0.27 0.44

High school / GED 12,652 0.53 0.50

Some college or higher 12,652 0.20 0.40

Self‐rated health

1992 12,652 3.42 1.21

1994 11,419 3.35 1.17

1996 10,770 3.37 1.15

1998 10,238 3.16 1.15

2000 9,626 3.24 1.14

2002 9,202 3.20 1.11

2004 8,768 3.12 1.12

2006 8,249 3.11 1.11

2008 7,837 3.05 1.09



Table 3: Self‐rated health model comparison, Health and Retirement Study 1992‐2008

Variable Model A1 Model A2 Model B Model C

Effect on intercept

Intercept1 2.990 (<.001) 2.990 (<.001) ‐4.075 (<.001) ‐2.189 (<.001)

Intercept2 ‐ ‐ ‐1.391 (<.001) ‐0.718 (<.001)

Intercept3 ‐ ‐ 1.418 (<.001) 0.740 (<.001)

Intercept4 ‐ ‐ 4.419 (<.001) 2.378 (<.001)

Age ‐0.017 (<.001) ‐0.017 (<.001) ‐0.056 (<.001) ‐0.031 (<.001)

Female 0.009 (.648) 0.009 (.648) 0.045 (.458) 0.035 (.291)

Hispanic ‐0.333 (<.001) ‐0.333 (<.001) ‐1.024 (<.001) ‐0.583 (<.001)

Race

White ref ref ref ref

Black ‐0.403 (<.001) ‐0.403 (<.001) ‐1.304 (<.001) ‐0.722 (<.001)

Other race ‐0.166 (.001) ‐0.166 (.001) ‐0.536 (.001) ‐0.284 (.002)

Education

<HS ref ref ref ref

HS/GED 0.590 (<.001) 0.590 (<.001) 1.840 (<.001) 0.997 (<.001)

>HS 0.991 (<.001) 0.991 (<.001) 3.195 (<.001) 1.715 (<.001)

Effect on slope

Intercept ‐0.033 (<.001) ‐0.033 (<.001) ‐0.098 (<.001) ‐0.033 (<.001)

Age 0.000 (.031) 0.000 (.035) ‐0.001 (.188) 0.001 (.002)

Female 0.004 (.005) 0.004 (.005) 0.010 (.022) ‐0.001 (.802)

Hispanic 0.005 (.040) 0.005 (.058) 0.019 (.012) ‐0.001 (.900)

Race

White ref ref ref ref

Black 0.009 (<.001) 0.009 (<.001) 0.031 (<.001) 0.016 (<.001)

Other race 0.001 (.809) 0.001 (.819) 0.002 (.879) 0.007 (.311)

Education

<HS ref ref ref ref

HS/GED ‐0.005 (.002) ‐0.005 (.003) ‐0.019 (<.001) ‐0.011 (.001)

>HS ‐0.009 (<.001) ‐0.009 (<.001) ‐0.040 (<.001) ‐0.026 (<.001)

Variance components

Var(intercept) 0.827 0.827 8.621 ‐

Var(slope) 0.002 0.002 0.021 ‐

Cov(intercept,slope) ‐0.017 ‐0.017 ‐0.196 ‐

Residual variance 0.431 0.431 ‐ ‐

Models: A1 = Linear MLM; A2 = Robust MLM; B = Conditional Ordered‐Logit; C = Marginal Ordered‐Logit.

a Coefficient estimates significant at (two‐tailed) α=.05 are in bold.

b p‐values in parentheses.



Table 4: List of population parameters used in simulation 

Regression Coefficients  Variance Components 

Parameter Value  Parameter Value (SD) 

β00 10  σε
 15 

β01 -16  σ00 20 

β02 0.6  σ11 7 

β10 4  ρ01 -0.15a 

β11 -4    

β12 0.06    
a Correlation coefficient 

 



Figure 1: Predicted trajectories of self-rated health, Health and Retirement Study 1992-2008* 

 

a) Predicted self-rated health, Model A: Linear multilevel model 

 

 

b) Predicted probability of “Very good” or “Excellent” health, Model B: Conditional 
ordered-logit 

 
* Predicted trajectories for non-Hispanic white males, aged 55 at baseline, with random 
effects set at their zero means. 
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Figure 2: Predicted conditional and marginal probabilities of self-rated health categories 
over time; Results from ordered-logit regression* 
 

 
a) Model B: Conditional ordered-logit 

 

 
b) Model C: Marginal ordered-logit 

 

* Predicted probabilities for non-Hispanic white males, aged 55 at baseline; in Model B, 
predicted probabilities are conditional on random effects set to their zero means. 
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Figure 3: Model comparison. Power surfaces for β10 at α=0.05. 
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A. Linear MLM (conditional)
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B. Conditional Ordered-Logit
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C. Marginal Ordered-Logit
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D. Marginal Logit



 

Figure 4: Model comparison. Power surfaces for β11 at α=0.05. 
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A. Linear MLM (conditional)
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B. Conditional Ordered-Logit
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C. Marginal Ordered-Logit

3
4

5
N

o.
 o

f O
bs

er
va

tio
ns

100 200 300
No. of Respondents

0

20

40

60

80

100

Po
w

er
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Figure 5: Model comparison. Power surfaces for β12 at α=0.05. 
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A. Linear MLM (conditional)
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B. Conditional Ordered-Logit
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C. Marginal Ordered-Logit
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