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Using Discrete-time Event History Fertility Models to Simulate  

Total Fertility Rates and Other Fertility Measures 

Abstract 

Event history models, also known as hazard models, are commonly used in analyses of 
fertility. Such models offer many advantages over more simplistic OLS or Poisson models of 
children ever borne.  One drawback of event history models is that the conditional 
probabilities estimated by event history models do not readily translate into summary 
measures, particularly for models of repeatable events, like childbirth.  In this paper, we 
describe how to translate the results of discrete-time event history models of all births into 
well-known summary fertility measures: simulated age- and parity-specific fertility rates, 
parity progression ratios, and the total fertility rate.  Our method incorporates all birth 
intervals, but permits the hazard functions to vary across parities.  It also can simulate 
values for groups defined by both fixed and time-varying covariates, such as marital or 
employment life histories.  We demonstrate the method using an example from the 
National Survey of Family Growth and provide an accompanying data file and Stata 
program.  
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Using Discrete-time Event History Fertility Models to Simulate  

Total Fertility Rates and Other Fertility Measures 

Event history models, also known as hazard models, are commonly used in analyses of 

fertility.  Provided that retrospective or prospective fertility histories are available, such 

models offer many advantages over more simplistic OLS or Poisson models of children ever 

borne.  Event history models potentially provide richer information about the age at first 

birth and subsequent birth spacing because they account for both the occurrence and 

timing of births.  They also appropriately handle right censoring, thus permitting analyses 

to include women at all stages of their reproductive lives rather than just older women 

with completed fertility.  Finally, they permit researchers to incorporate critical time-

varying predictors, such as employment, educational, and marital statuses, into analyses.   

One drawback of event history models, however, is that they are difficult to 

translate into meaningful information about lifetime childbearing or birth spacing. In fact, 

many studies using event history analysis to model births analyze parities separately or 

first birth only.  In this paper, we show how to convert the results of pooled discrete-time 

event history models of all births into well-known fertility measures, including simulated 

age- and parity-specific fertility rates, parity progression ratios, and total fertility rates 

(Newell 1990).  Age- and parity-specific fertility rates provide detailed information on the 

number and timing of births across the reproductive life course.  Parity progression ratios 

(PPR) are important indicators of spacing and stopping behaviors and childlessness.  

Finally, the total fertility rate is the most commonly-used measure of fertility.  It provides 

an estimate of the total number of children the average woman will have in her 

reproductive lifetime if she experienced all current age-specific fertility rates.  Although 
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others have developed generalized methods for estimating multistate lifetables based on 

event history models (e.g., Cai et al. 2010; Lee and Rendall 2001), we show how to apply 

these ideas to fertility histories, an extension that has not yet appeared in the literature to 

the best of our knowledge.   

The key advantage of the method we present is that it permits researchers to 

compare groups on these common-used fertility measures while statistically controlling for 

differences on other characteristics associated with childbearing.  In doing so, our method 

provides a comprehensive picture of women’s fertility experiences across the entire 

reproductive life course.  This goes beyond most descriptive and multivariate fertility 

analyses, which tend to be confined to births of specific parities (e.g., first births) and only 

rarely consider all births simultaneously (Guzzo and Hayford 2011; Schellekens 2009; 

Carter 2000; Brand and Davis 2011; Goldstein, White, and Goldstein 1997; and White et al. 

2008).  Additionally, our method can simulate values for groups defined by both fixed and 

time-varying covariates.  This is helpful for assessing how life course trajectories can delay 

(or accelerate) births and eventually reduce (or increase) completed fertility.  For example, 

one could estimate the effects of delayed marriage on completed fertility by comparing 

simulated TFRs for women who married at age 35 with their peers who are similar on all 

characteristics except that they married at age 20. 

We first describe the data and measures used in our examples.  Next, we explain 

how single-event event history models are related to single-decrement life tables using an 

illustration drawn from the National Survey of Family Growth (NSFG).  This section 

provides an orientation on the linkage between event history analysis and single-

decrement life tables, but can be skipped by readers who are already familiar with these 
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methods (see also Singer and Willett (2003) and Teachman and Hayward (1993) for more 

rigorous treatments of these methods).  We next discuss the main contribution of this 

paper, the extension of single-decrement methods to multiple births.  Again, we illustrate 

the method with an example from the NSFG.  We estimate discrete-time event history 

models because of their clear analytic linkages to life tables.  Nevertheless, it would be 

possible to develop a similar approach for other kinds of event history models (e.g., Cox 

Models).   Also, although we discuss the method as relevant for fertility, it could be applied 

to any event history analysis in which multiple events per individual are modeled (e.g., 

marriages, arrests, poverty spells, etc.). 

 

Data and Measures 

To simulate fertility measures from event history model estimates, it is necessary to 

model the occurrence and timing of births.  Therefore, a fertility history recording the 

precise timing of each birth is required (ideally month and year), such as is available in the 

National Survey of Family Growth or the Demographic and Health Surveys.  In data sources 

like these, older women are able to report a complete fertility history, but younger women 

may report a partial or unfinished fertility history.  Younger women may have more 

children in the future but they are right-censored by the survey.  This is perfectly 

acceptable because event history models take into account the fact that older women spent 

more time at risk of childbearing than younger women. 

To generate the examples provided in this paper, we used the continuous collection 

of the National Survey of Family Growth (NSFG 2006-2010). The NSFG is a nationally 

representative cross-sectional survey of reproductive age women in the United States 
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conducted by the National Center for Health Statistics (NCHS).  As the primary fertility 

survey in the United States, the NSFG collects information on the respondent’s 

race/ethnicity, complete fertility histories, and other socio-demographic controls such as 

marriage history (CDC 2009 website). When available, the recoded variables, rather than 

the raw variables, were used in the analysis as recommended by the National Center for 

Health Statistics (Lepkowski et al. 2010).  

We limited the sample to U.S.-born non-Hispanic black and white women with full 

information on the sample variables. After listwise deletion, the final sample included 

7,164 women. We then organized the analytic data file into “person-year” records, with one 

data record for each year of age a woman is at risk of having a birth (i.e., from age 14 [the 

earliest reported age at first birth] to age 45 or age at censorship/survey date, whichever is 

younger).  

 The dependent variable is a dichotomous indicator of whether or not a woman had 

a single live birth in the age interval, x to x+1.  Time-constant predictors assume the same 

value across all person-year records for an individual.  Our analyses include race (non-

Hispanic black and white) and religion (no religion, Catholic, Protestant, and other) as 

time-constant predictors.  Values for time-varying predictors may change across ages 

(across person-year records) for a given individual.  We included three time-varying 

predictors in our models: age, marital status, and educational attainment. Age is coded in 

five-year categories: 14-19; 20-24; 25-29; 30-34; 35-39; and 40-45. Marital status is a 

dichotomous indicator of whether or not a woman in married at the beginning of the 

interval; any status other than married is coded zero. Years of education are the number of 
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completed years of school a woman has received at the beginning of each person-year 

interval. Women are assumed to begin schooling at age 6. 

 

Section 1: Hazard Models and Life Tables for Non-Repeated Events 

Event history models are conceptually linked to life tables (for examples see Allison 

1989; 1995).  Life tables were first developed by demographers to estimate how mortality 

reduces the size of a cohort as it ages.  Event history models of non-repeated events (like 

first births) are directly analogous to single-decrement life tables (Singer and Willett 

2003).  In both, cohorts are conceptualized as being exposed to risk of an event.  The age 

pattern of this risk is referred to as the hazard function in an event history analysis and 

notated as qx in a life table, where qx reports the probability of the event at age x.  Once 

cohort members experience the event in question (such as a first birth), they exit the risk 

pool, leaving behind an ever-diminishing group at risk.  The depletion of the cohort by age 

is referred to as the survival function in an event history analysis, and notated as lx in a life 

table.   Finally, the number of events experienced by the cohort at each age x is denoted as 

dx in a life table.    

The key advantage of event history models over life tables is that they estimate the 

associations of predictors with the timing and occurrence of events.  That is, they allow us 

to estimate how the hazard of the event differs across subgroups (such as marital status) or 

varies across values of a covariate (such as education) in addition to standard errors 

around the estimates. Event history model coefficients specifically estimate the association 

of predictors with the hazard of the event, which is the conditional probability of the event 

occurring in a narrow time window (typically a year) given that it has not already occurred.  
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For example, in a model of first births, the hazard is the probability of a first birth occurring 

at age x given that the woman has not yet had a birth.  Because people are often interested 

in lifetime patterns of fertility (e.g., median age at first birth), researchers often use event 

history life tables to transform event history coefficients into simulated birth histories for 

selected groups.  

To illustrate, we estimated a simple discrete-time hazard model (Allison 1989) of 

first birth based on fertility histories in the National Survey of Family Growth, and then 

used the results to generate a life table of first birth. The hazard model of first birth is a 

logistic regression model predicting whether a first birth occurred in each person-year 

interval.  The analytic sample is confined to person-year records falling within the first 

birth interval (i.e., from age 14 until age at first birth, age 45, or censorship by the survey, 

whichever comes first).  The estimated model coefficients are: 

logit(pr[first birth age x|no earlier birth]) = -3.88 + 0.50(age20-24) + 0.15(age25-

29) + 0.09(age30-34) – 0.53(age35-39) – 2.31(age40-45) + 0.75(black) + 

0.02(education) + 1.85(married) – 0.01(no religion) – 0.21(Catholic) – 0.21(other 

religion).   

Using race as an example, the results suggest that black women are 2.11 times as 

likely to have a first birth as white women (exp(0.75)=2.11).  To express this difference in 

more concrete terms, we used the model estimates to generate a life table for two 

hypothetical groups: black and white never-married, Protestant women with 12 years of 

education.  This involved two steps.  First, we generated predicted hazards for these two 

groups across all ages (shown in the qx columns in Table 1).  These were calculated by 

substituting values (i.e. years of education and religion category) into the event history 
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model to obtain predicted log-odds, and then transforming the predicted log-odds into 

predicted hazards (i.e., qx)i.  Second, we used the predicted hazards to simulate the 

proportion of women estimated to remain childless at age x (shown in the lx column in 

Table 1 and graphed in Figure 1).  At very young ages (e.g., 14) all are childless, so l14 is set 

equal to 1.0.  The expected proportion having births at each age x is given in the dx column, 

and it is calculated as the product of lx and qx:  dx = lx * qx.  As the cohort ages from one year 

to the next, the proportion remaining childless declines by the proportion who had a birth 

the year before:  lx+1 = lx - dx.  Finally, the proportion simulated to have had a first birth by 

age x is 1 – lx.   

The results show that if women experienced the predicted hazards for never-

married, Protestant women with 12 years of education, the simulated median age of first 

birth (i.e., the age at which half the cohort has had a first birth) would be 36 for whites and 

24 for blacks.  Additionally, among white women, 14.5% (1-.855) would have a birth prior 

to age 20, 30.9% by age 25, and 53.0% by age 45, leaving 47.0% childless by age 45.  

Among black women, the respective percentages would be much higher: 27.8%, 53.4%, and 

79.1%, leaving only 20.9% childless by age 45. 

 

Section 2: Hazard Models and Life Tables for Repeated Events 

The methods described above work well for non-repeatable events like first births, 

but cannot be directly applied to repeatable events, like all births.  The reason is that, in 

hazard models of multiple births, the underlying life table model is no longer a single-

decrement life table.  Rather, the underlying life table has multiple, sequenced events: 

women can have multiple births but do not enter the “risk set” of having the next higher 
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order birth unless they have already had earlier parity births.  Because of their underlying 

complexity, the hazard in models of multiple births has an even narrower interpretation 

than in models predicting only first births.  It is conditional not only on not already having 

had a jth birth, but also on already having had the previous (j-1th) birth.  The coefficients 

therefore provide an estimate of a group’s relative risk of having a birth among those in the 

same age/parity window.  Models of repeated events can be used to generate a large set of 

predicted hazards of having a birth by both age and parity.  However, translating these 

predicted conditional probabilities into overall assessments of the timing or total number 

of births is not straightforward and can limit their utility in research.  In what follows, we 

outline a methodology for doing this and provide an empirical example.   The method 

involves three major steps: (1) model estimation, (2) generation of predicted hazards for 

selected groups, and (3) generation of fertility life tables for multiple births.  The Stata 

programs and data file used to generate the example are available on-line at www.[link to 

be determined]. 

 

Step 1. Model Estimation 

 We first use a discrete-time event history model to model the occurrence and timing 

of births.  As described by Allison (1989; 1995), this model uses logistic regression to 

estimate the log-odds of a birth occurring in each person-year interval as a function of the 

woman’s age category, and non-time-varying and time-varying characteristics.  In the case 

of multiple events, one may pool all birth intervals in the same analysis providing 

appropriate steps are taken to account for the clustering of births within individual women 

(Allison 1995; Cleves et al. 2008)ii.   
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There are several possible ways to handle multiple birth intervals.  At the simplest 

level, one can estimate an additive model that includes birth interval (i.e., parity) as one of 

the time-varying independent variables: 

Additive Model: Logit(bx=1) = a + jx + AxB1 + CB2 + CxB3   

where: 

bx = birth occurred at  age x  
jx = birth interval j at age x (range: 1-J).  The jth birth interval starts in the person-

year following the j-1th birth, and ends in the person-year of the jth birth or 
censorship. 

Ax = vector of dummy variables indicating membership in 5-year age category at 
age x (note: other age intervals or age functions are possible) 

C = vector of time-fixed control variables 
Cx = vector of time-varying control variables 

This model allows the levels of the underlying hazard function to differ across birth 

intervals, but assumes that the shape of the hazard function (i.e., the age pattern given by 

B1) does not vary by birth interval.   

To partially relax this assumption, one can include interaction terms between birth 

intervals and age categories: 

Partially Interactive Model:    Logit(bx=1) = a + jx + AxB1 + CB2 + CxB3 + (jx* Ax)B6 

 
This model allows both the level and shape of the hazard function (i.e., age pattern of the 

hazard of childbearing) to vary by birth interval.  For example, if first births were heavily 

concentrated around age 25 but subsequent births were more flatly distributed across 

subsequent ages, this model would detect these parity differences.  A chi-square test 

indicates whether the partially interactive model fits the data better than the additive 

model (where 2 = -2LLadditive – (-2LLpartially interactive) and df = dfadditive - dfpartially interactive).     
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Finally, to allow the effects of all covariates to vary across birth intervals, one can 

estimate a fully interactive model: 

Fully Interactive Model: Logit(bxj=1) = aj + AxB1j + CB2j + CxB3j, for each jth birth interval.  
  
This model is estimated separately for each birth interval; higher birth intervals (e.g., 4th or 

higher) can be combined if sample sizes become too small.   This model is the most flexible 

of the three described.  If racial-ethnic groups had similar first birth, but different spacing, 

and stopping patterns, for example, this model would capture these differences.  One can 

use a chi-square test to test whether the fully interactive model fits better than the partially 

interactive model (where 2 = -2LLpartially interactive – (-2LLfully interactive) and df = dfpartially 

interactive - dffully interactive).  The -2LL and degrees of freedom of the fully-interactive model is 

obtained by summing the -2LL and degrees of freedom across all of the separate birth 

interval models (Singer and Willett 2003: 560-561). 

 To illustrate, we estimated the additive, partially-interactive, and fully-interactive 

models for our NSFG sample while adjusting for the clustering of observations within 

individual women.  The models are weighted with a normalized sampling weightiii to 

account for NSFG’s stratified sampling design.  Because of low cell sizes at higher parities, 

we top-coded our measure of parity at 3-or-more births.  The results are shown in Table 2.  

The chi-square test clearly indicates that the fully-interactive model fits the data 

significantly better than the partially-interactive model, which in turn, fits the data better 

than the additive model.  This is also evident by the fact that most of the age-parity 

interactions are significant in the partially-interactive model, and several of the coefficients 

vary widely across parities in the fully-interactive model.   
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Focusing on the effects of race and marital status in the best-fitting model (fully-

interactive), black women are 2.1 times (exp(0.75))  more likely than white women to have 

a first birth and 1.4 times (exp(0.34)) as likely to have a third-or-higher-order birth, but are 

no different from white women in the likelihood of having a second birth.  Additionally, 

married women are 6.3 times (exp(1.85)) as likely to have a first birth as unmarried 

women, 2.3 times (exp(0.85)) as likely to have a second birth, 1.3 times (exp(0.23)) as 

likely to have a third-or-higher-order birth.   

Step 2.  Generating Predicted Hazards 

After fitting the hazard model, one can use the results to obtain predicted hazards 

(often called conditional probabilities) of having a birth at each year of age and parity for 

selected groups of interest (i.e., groups k = 1 to K).  For example, if we were interested in 

obtaining predicted values for women with varying marital status histories, one group 

might be women who never married while another group might be women who married at 

age 25.  To hold other factors constant, all other predictors must be set to the same values 

across all groups (often the mean).  In general, the predicted probability of a birth at age x, 

birth interval j, for group k is obtained by inserting values for C and Cx (to identify groups 

1to K) for each combination of age (x) and parity (j) into the estimated model.   

The first step is to calculate the predicted log-odds for all values of age, parity, and 

groups (x, j, and k, respectively).  For example, for each of the fully-interactive models 

estimated for each jth birth interval, values for Ax, C, and Cx need to be replaced with values 

corresponding to each combination of x and k:     

Predicted logged-oddsxjk = aj + AxB1j + CB2j + CxB3j  
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The second step is to convert the predicted log-odds to predicted probabilities for 

each combination of x, j, and k; 

qxjk = exp(predicted log-oddsxjk) / [1-exp(predicted log-oddsxjk)] 

 As an illustration, Table 3 displays the predicted hazards (qx) for the first and 

second parities for white, Protestant women with 12 years of education who married at age 

25.  These predicted hazards serve as the key inputs for the other components of a fertility 

life table, which are discussed in the next section.  The predicted hazard of first birth at age 

20 is .042 and is obtained from the fully-interactive first parity model as follows: 

Predicted log-odds = -3.88 + 0.50(age 20-24) + 0.02(12 years of education) = -3.14; 

Predicted hazard = exp(-3.14)/(1+exp(-3.14)) = 0.042. 

At ages 25 and older, the women in the hypothetical cohort are married, so the calculations 

are adjusted accordingly and the predicted hazard increases substantially: 

Predicted log-odds = -3.88 + 0.15(age 25-29) + 0.02(12 years 

education)+1.85(married) = -1.63; 

Predicted hazard = exp(-1.63)/(1+exp(-1.63)) = 0.164. 

These calculations were repeated for each combination of age (x) and parity (j).  The 

predicted hazards in Table 3 are the same for each 5-year age block (e.g., 14 to 19, 20 to 24, 

etc.) because we modeled age effects using a set of dummy variables for 5-year age 

categories.   If we had modeled age as a continuous variable (or as a quadratic, for 

example), we would obtain different qxjk values for each single year of age. 

Step 3.  Generating Fertility Life Tables for Multiple Births 

To convert the predicted hazards to fertility measures like the total fertility rate, it is 

necessary to construct a sequential multi-decrement life table.  The life table models report 
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by parity how many children women in a synthetic cohort are likely to have at each age 

throughout their entire reproductive lifetime, if they experienced all of the predicted 

probabilities produced by the event history model.  If the predicted probabilities pertain to a 

particular group (e.g., women who never married), then the life table will produce 

estimates of the simulated number and timing of births for women with these 

characteristics. 

As noted above, Table 3 displays a portion of a fertility life table for the first two 

parities from age 14 to 45 for never-married, Protestant white women with 12 years of 

education.  The complete life table is much larger with 11 parities (the maximum number 

of births observed in our sample).  

The x column denotes single year of age for the synthetic cohort.   

The qxj columns show the predicated hazard of having a jth birth, that is, the 

probability of having a jth birth at age x, given that the jth birth has not yet occurred but that 

the j-1th birth has occurred.  For example, an 18 year old has a 0.026 probability of having a 

first birth if she has never had a birth before, but a 0.139 probability of having a second 

birth if she already had a first but not yet a second. These values are the predicted 

probabilities generated from the discrete-time event history models (i.e., qxjk).  They are the 

only inputs required to produce the life table.   

The lxj columns indicate the proportion of the entire synthetic cohort at risk of 

having the jth birth.  l14(j=1) is set equal to 1.0 because the entire cohort at age 14 is “at risk” 

of having a first birth (because none of the women in our sample had a birth at an earlier 

age).  The proportion at risk of having a first birth declines as 1st births occur.  Additionally, 
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the proportion at risk of a second birth is smaller because it includes only those who have 

already had a 1st birth but not yet a 2nd birth.   

The dxj columns give the unconditional probability of a jth birth at each age x.  In 

other words, it is the proportion of all women in the synthetic cohort who have a jth birth at 

age x.   

These three columns are related in the following ways.  For the first parity: 

For x = 14,  

l14,1 = 1.0 

d14,1 = 1.0 * q14,1. 

And, for x > 14, 

dx,1 = lx,1qx,1 

lx+1,1 = lx,1 – dx,1 

And for subsequent parities j: 

For x = 14, 

l14,j = d14,j-1 

d14,j = (d14,j-1 /2) * q14,j 

And, for x > 14, 

dx,j = [(dx,j-1 /2) +  (lx-1,j – dx-1,j)] qx,j 

lx+1,j = dx+1,j-1 + lx,j – dx,j 

Note: Women who had a j-1th birth in the past year (d14,j-1 or dx,j-1) are 
at risk of a jth birth for only half a year because earlier births occurred 
on average mid-way through the age interval. 
 

Importantly, the dxj columns can be used to estimate various summary measures of 

fertility.  If we sum dxj across all ages (summing down columns), we simulate the 
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proportion of women in the synthetic cohort who ever had a jth birth in their reproductive 

lifetime, or the simulated parity-specific total fertility rate: 

 

We can construct a series of simulated parity progression ratios (i.e., the probability of 

progressing to the next higher parity) from these: 

 

 

where TFR0 = 1. 

For example, the PPR for parity 1 is the probability of ever having a first birth; PPR for 

parity 2 is the probability of ever having a 2nd birth among those who had a 1st birth, and 

PPR for parity k is the probability of having a kth birth among those who had k-1 births.   

If we sum dxj across all parities j (summing across rows), we obtain the simulated 

proportion of women having a birth of any parity age at x, or age-specific fertility rates: 

 

Finally if we sum fx, we obtain the simulated total fertility rate, or the expected number of 

children born to women if they experienced all of the predicted age- and parity-specific 

birth hazards: 

 

 

    



jTFR xjd
x10

49



  



jPPR jTFR
j1TFR

  



xf  xjd
j1





    



TFR xf
x10

49





18 
 

  

Standard Errors.  Although alternative approaches have been used (Lynch and 

Brown 2010 and Lee and Rendall 2001), it is increasingly common to sample with 

replacement from the data to obtain bootstrapped standard error estimates of life table 

components (Cai et al. 2010; Rendall et al. forthcoming; Poi 2004). Here, we used Stata’s 

bootstrap routine to draw 500 replicate samples with N observations (i.e., the same 

number as in the full sample) from the data.  We sampled by person-level clusters (i.e., 

taking all person-year observations for each sampled individual) rather than sampling 

person-year records independently.  We estimated the models for each of the 500 replicate 

samples and used the results to estimate the life table components.  The mean across the 

500 replicates provided the expected value of the life table components and the standard 

deviation provided an estimate of the standard error.  Figure 2 plots the estimated TFR for 

black women by sample replicate, which clearly displays random variation across 

replicates.  However, the average TFR and standard deviation stabilize by about the 250th 

replication, as shown in Figures 3 and 4, respectively. 

Example: Predicted fertility measures by race and marital status.  We estimated 

simulated fertility measures for black and white women while holding the other time-

constant predictor (religion) at its sample mean and the time-varying predictors (marital 

status and education) at their age-specific sample means. We summarize the results in 

Figure 5 and Table 4, but also provide the simulated age- and parity-specific fertility rates 

in an on-line appendix (included here for reviewers). 

 Simulated age- and parity-specific fertility rates for black and white women are 

displayed in Figure 5.  Both groups show the typical age pattern with the highest fertility 

rates occurring for women aged 20 to 34.  However, black women exhibit much higher 



19 
 

  

fertility than their white peers, especially at younger ages and at higher parities.  These 

patterns also appear in the simulated total fertility rates and parity progression ratios 

shown in Table 4.  For example, nearly all (95%) black women are simulated to have a birth 

in their lifetime compared with only 78 percent of white women.  The total fertility rates 

and parity progression ratios further indicate that black women are more likely to continue 

to have subsequent births at all parities.  Overall, even after controlling for marital status 

history, educational attainment, and religious affiliation, black women are simulated to 

have nearly one more birth than white women in their lifetimes (2.71 versus 1.76 births). 

The standard errors suggest that this difference is statistically significant; it is much larger 

than twice the standard error of the difference (2 * SE-diff = 2 * sqrt(.092+.042) = .20).   

To illustrate the method for a time-varying predictor, we generated simulated 

fertility measures for four groups of women with various marital status histories: (1) never 

married, (2) married age 20+, (3) married age 25+, and (4) married age 25-34. Again, we 

hold the remaining time-constant predictors (race and religion) at their sample means and 

the time-varying predictor (education) at its age-specific sample mean.  Simulated age-, 

parity-specific fertility rates for the four marital status groups are displayed in Figure 6.  

Never-married women exhibit very low and flat age patterns, while the other groups 

exhibit elevated fertility rates following marriage.  Women who marry at age 20 exhibit 

much higher lifetime fertility than women who marry at age 25 because as married women 

they are exposed to the highest age-specific fertility rates between ages 20 and 24.  But the 

fertility pattern of women who were married age 25 and older is nearly identical to the 

pattern among those who were married between the ages of 25 and 34, largely because 

fertility rates are low for all groups after age 35.  These patterns appear in the simulated 
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total fertility rates and parity progression ratios shown in Table 4.  For example, more than 

half (56%) of never-married women are simulated to ever have a birth, much less than 

ever-married women.  Among ever-married women, age at marriage is moderately related 

to childlessness.  Nearly all (98%) women who marry at age 20 are simulated to ever have 

a birth, compared with 95 percent among those marrying at age 25, and 91% among those 

married between the ages of 25 and 34.  Interestingly, among women who already had two 

births, the probability of progressing to third or higher-order births is similar across all 

groups except those marrying at very young ages.  In other words, fertility behaviors at 

higher parities appear to be less associated with marriage than lower-parity fertility (this is 

also evident in the fully-interactive models).  Overall, after controlling for race, educational 

attainment, and religious affiliation, never-married women are simulated to have only 1.25 

lifetime births compared with 2.94, 2.35, and 2.23 among women who were married age 

20+, 25+, and 25-34, respectively.   

 

Conclusions 

 In this paper, we presented a method for translating multiple-birth hazard model 

coefficients into simluated fertility measures, including age-specific fertility rates, total 

fertility rates, and parity progression ratios.  The key advantage of the method is that it 

permits comparisons of the timing and number of lifetime births across groups while 

controlling for other characteristics.  For example, one could use the method to simulate 

total fertility rates for various racial and ethnic groups while holding constant a large set of 

other fixed and time-varying characteristics, such as social class origins, educational 

attainment, and marriage and employment history. 
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 It is crucial to recognize that the simulated measures and standard errors generated 

from the life tables are only as good as the data and model on which they are based.  For 

example, it is important to take into account how the model predictors vary across parities.  

This was clear in our NSFG example as the fully-interactive model fit the data significantly 

better than the additive and partially-interactive models.  The consequence of selecting the 

less optimal model can be seen in comparisons of simulated fertility measures across 

model specifications.  For example, the simulated TFR for white women is lower (1.65) 

when generated from the worst-fitting additive model than the better-fitting partially-

interactive model (1.71), which is in turn lower than the TFR generated from the best-

fitting fully-interactive model (1.76).   

Another potential concern is that many data sources, including the NSFG, include 

only a few time-varying covariates, so important predictors of fertility like school 

enrollment, labor force participation, and involvement in sexual relationships outside of 

marriage may be missing from the hazard model.  Indeed, the differences we observed 

between black and white women in simulated total lifetime fertility (from the multi-state 

life tables) might be driven by these unmeasured factors. In other words, the summary 

measures of interest to many researchers are only as good as the discrete time hazard 

models used as the inputs for the life tables.  Related to this concern, the relationships 

estimated by the model and the simulated fertility measures may not be causal.  For 

example, we estimated much higher lifetime fertility for ever-married women than never-

married women.  However, this difference may be due to the selection of women with 

higher fertility intentions into marriage rather than (or in addition to) the effects of 

marriage on fertility. 
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As a related point, it is also important to avoid simulating results that extend beyond 

the ranges observed in the data.  If one attempts to simulate results outside of the observed 

data, the multistate life table will not be able to reproduce the true values resulting in 

biased estimates (Cai et al. 2010). In general, the closer substituted values are to the 

sample means, the more accurate the estimates.  

 Finally, our NSFG example involved fertility, but the method could be applied to 

other repeated events.  For example, criminologists are often interested in modeling the 

occurrence and timing of arrests.  One could use multiple-event hazard models and life 

tables to simulate estimates of the age pattern and cumulative number of lifetime arrests 

for selected groups while controlling for other key variables known to be associated with 

arrests.  Such information could be helpful for discerning between groups for whom 

delinquency tends to be concentrated in adolescence and groups for whom criminal 

activity extends into adulthood. This may provide useful information for designing 

interventions and deterrence programs.  A similar type of analysis could be conducted on 

marriages, with the intent of identifying how marriage patterns differ across groups (e.g., 

no marriage, late marriage, multiple marriages).  Researchers could use the method to 

produce summary measures on the total number of marriages a woman might experience 

in her lifetime and the likelihood of transitioning from a first marriage to a subsequent.  

Overall, the methodology described here offers many practical advantages for those 

seeking to translate the repeated or multi-event hazard model estimates into interpretable 

summary measures rather than relying on cumbersome conditional hazards. 

 
                                                        
i Where the predicted hazard = exp(predicted log-odds)/(1-(+exp(predicted log-odds)). 
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ii We recommend using the cluster or svy options in Stata to account for dependence among observations 
(Cleves et al. 2008: 191-195), or analogous options in other statistic packages.  Alternatively, one could 
estimate such models with individual random or fixed effects. 
iii The normalized weight is the NSFG sampling weight divided by a constant such that the sum of the weights 
equals the sample size. 
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