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Abstract

While the Gompertz distribution is often fitted to lifespan data, testing whether
the fit satisfies theoretical criteria is being neglected. Here six goodness-of-fit measures
– the Anderson-Darling statistic, the Kullback-Leibler discrimination information, the
correlation coefficient test, a statistic using moments, testing for the mean of the sam-
ple hazard, and a nested test against the generalized extreme value distributions, are
discussed. Along with an application to laboratory rat data, critical values calculated
by the empirical distribution of the test statistics are also presented.

1 Introduction

Goodness-of-fit tests determine if the empirical distribution of the data satisfies the as-
sumptions of theoretical distributions. While the Gompertz distribution is routinely used
in demography, biology, actuarial and medical science, according to our best knowledge,
no studies about on goodness-of-fit tests for it have been published so far. However, the
Gompertz distribution is a degenerate generalized extreme value distribution for the min-
ima, and an abundance of goodness-of-fit tests exist in the literature for other extreme value
distributions (see e.g., Hosking 1984).

In a landmark paper Shannon (1948) defined the entropy of distributions and Kullback and
Leibler (1951) were the first to measure the distance between probability distributions based
on their entropy. Later, Song (2002) operationalized the Kullback-Leibler distance to test
the goodness-of-fit of distributions. Recently, Pérez-Rodŕıguez et al. (2009) applied it to the
Gumbel distribution.

In another important article, Anderson and Darling (1952) developed the Anderson-Darling
test that later Stephens (1977) analyzed in the context of extreme value distributions. Sin-
clair et al. (1990) modified the Anderson-Darling test to allow different weighting schemes
that emphasize either the lower or the upper tail of the distributions.
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Filliben (1975) used the Pearson correlation coefficient to check the correlation between
expected statistics of a theoretical distribution and sample statistics. The correlation coef-
ficient test was the most popular in hydrology (Vogel 1986; Kinnison 1989) to assess the fit
of extreme value distributions.

The likelihood ratio test naturally arises to account for the differences between the Gompertz
and other extreme value distributions. The generalized extreme value distribution is charac-
terized by µ, location, σ, scale and ξ shape parameters. For ξ = 0, the generalized extreme
value distribution reduces to the Gumbel, and the Gompertz distribution is a reversed and
truncated Gumbel distribution with additional correlation between its parameters a and b.
The different parametrization of the Gompertz distribution removes it from location-scale
family of distributions.

Li and Papadopoulos (2002) proposed a goodness of fit test using moments. The test statistic
is derived from an identity for the moments, and its values are compared to the z-values of
the standard normal distribution.

This paper will first briefly describe each of these tests and apply them to the Gompertz
distribution. Additionally, based on the observation that the maximum likelihood estimators
of a and b equal the mean of the sample hazard in the Gompertz distribution (Lenart 2012),
a fifth test will be defined. The final sections of the paper compare the power of the tests
against alternative distributions and derive critical values of them based on Monte Carlo
simulation experiments. An application of the tests to laboratory rat data is also discussed.

2 Kullback-Leibler information

Let the entropy (Shannon 1948) be defined as

H(X) = −
∞∫

−∞

f(x) log fx dx (1)

for continuous random variable X with probability density function f(x), x ∈ R. Entropy
is a measure of information (e.g., Brissaud 2005) that shows the difficulty of predicting the
outcome of a random draw from a probability distribution. Kullback and Leibler (1951)
realized that probability distributions can be compared based on their entropy; the closer
the values of their entropies are, the more the distributions resemble to each other.

The Kullback-Leibler distance measures the information for discrimination between two
probability distributions. Let distribution F have density function f(x) and G(x, θ) be
a parametric family of distributions that have density g(x; θ), then the Kullback-Leibler
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distance

I(F,G; θ) =

∞∫
−∞

f(x) log
f(x)

g(x; θ)
dx , I(F,G; θ) ≥ 0 , (2)

will measure the relative entropy of distribution F to G.

2.1 Goodness-of-fit test based on the Kullback-Leibler informa-
tion

The definition of the Kullback-Leibler distance allows to develop a goodness-of-fit test for a
parametric distribution (Song 2002):

H0 : F (x) = G(x; θ) .

Under the null hypothesis, I(F,G; θ) = 0 and if I(F,G; θ) > 0 then the alternative,
F (x) 6= G(x; θ) is true. The derivation of the Kullback-Leibler discrimination information
for the goodness-of-fit of the Gompertz distribution will follow the goodness-of-fit procedure
implemented by Song (2002) and used by Pérez-Rodŕıguez et al. (2009) to test the Gumbel
distribution.

Note that (1) can be substituted in (2) as

I(F,G; θ) = −H(F )−
∞∫

−∞

f(x) log g(x, θ) dx .

To estimate H(F ), Song (2002) advises to introduce the Vasicek (1976) entropy estimator

Hmn =
1

n

n∑
i=1

log
n

2m

(
X(i+m) −X(i−m)

)
,

n

2
− 1 ≥ m ≥ 1 ,

where
{
X(1), . . . , X(n)

}
are n independent, ordered observations. The width of the estimation

window is of size m, if i−m < 1, then X(i−m) = X(1) and if i+m > n, then X(i+m) = X(n).

Next,
∫∞
−∞ f(x) log g(x, θ) dx has to be estimated. Song (2002) proposes to use

∞∫
−∞

f(x) log g(x, θ) dx =
1

n

n∑
i=1

log g
(
Xi, θ̂

)
,

where θ̂ is a vector of maximum likelihood estimators.
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Song (2002) advocates to choose the optimal window width, m̂ by maximizing the sample
entropy with the constraint of I(F,G; θ) ≥ 0 :

m̂ := minm∗ :

m∗ = arg max
m

Hmn

s.t. −Hmn −
1

n

n∑
i=1

log g
(
Xi, θ̂

)
≥ 0 ,

that is, choose the minimal m∗ that maximizes Hmn.

Adding all of the pieces together, the test statistic will be

Im̂n = −Hm̂n −
1

n

n∑
i=1

log g
(
Xi, θ̂

)
.

Large values of I(F,G; θ) support the alternative hypothesis. As Im̂n is a sample estimate
of I(F,G; θ), H0 will be rejected if Im̂n is larger than a critical value of it.

2.1.1 Asymptotic distribution

To calculate the asymptotic distribution of the Kullback-Leibler statistic, let

φ(G, θ) = sup {x : G(x, θ) = 0}
ψ(G, θ) = inf {x : G(x, θ) = 1} .

and if the assumptions of

sup
φ(G,θ)<x<ψ(G,θ)

G(xθ)(1−G(x, θ))
|∂g(x,θ)

∂x
|

g2(x, θ)
<∞

lim
n→∞

m

log n
→∞

lim
n→∞

m(log n)
2
3

n
1
3

→ 0

hold then the standardized test statistic

(6m̂n)
1
2 (Im̂n − log 2m̂− γ +R2m̂−1)→d N(0, 1) , (3)

where

Rm =
m∑
j=1

1

j

and γ ≈ 0.57722 is the Euler-Mascheroni constant converges in distribution to N(0, 1) (Song
2002: Theorem 1).
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Note that Rm is a partial sum of the harmonic series, so Rm = logm + γ + O( 1
2m

). If for
large m, log(2m) ≈ log(2m− 1) and 1

2m
≈ 0, then

6(m̂n)
1
2 Im̂n →d N(0, 1) .

2.2 Small sample bias

Im̂m is a biased estimator of I(F,G; θ) for small samples (Song 2002) and the bias can be
corrected by changing (3) to

(6m̂n)
1
2

(
Im̂n − log 2m̂− log n+Rn −R2m̂−1 +

2m̂

n
R2m̂−1 −

1

2n

m̂∑
i=1

Ri+m̂−2

)
→d N(0, 1) .

2.3 Goodness-of-fit of the Gompertz distribution

In the case of the Gompertz distribution,

g(x; a, b) = ae−
a
b (ebx−1)+bx

or by noting that the mode, M = 1
b

log b
a
, hence a = be−bM , then

g(x; b,M) = bee
−bM−eb(x−M)+b(x−M) .

In general, the form that includes the mode will be preferred because Monte Carlo ex-
periments showed that the test statistics are scale-free in this case (Fig 2) while in the
parametrization with θ = {a, b} the distribution of the test statistics are affected either by
a or b (Monte Carlo experiments for the latter case are not shown here).

The Kullback-Leibler discrimination information statistic for the Gompertz distribution is

Im̂n = e−b̂M̂ + b̂
(
X̄ − M̂

)
− 1

n

n∑
i=1

(
eb̂(Xi−M̂) − log

n

2m̂

X(i+m̂) −X(i−m)

b̂

)
,

where X̄ denotes the mean of {Xi, . . . , Xn}.

If G is the Gompertz distribution, then φ(G, θ) = −∞ and ψ(G, θ) =∞ and

sup
−∞<x<∞

G(xθ)(1−G(x, θ))
|∂g(x,θ)

∂x
|

g2(x, θ)
= 1

for any suitable m, this statistic converges in distribution to the standard normal. Therefore,

Im̂n ≥ log 2m̂+ γ −R2m̂−1 + (6m̂n)−
1
2Z1−α

tests H0 at level α asymptotically. Z1−α denotes the 100(1 − α) percentage point of the
standard normal distribution. Large values of Im̂n reject the null hypothesis. For small
samples either the bias has to be corrected or the critical values of I(F,G; θ) has to be
estimated by Monte Carlo simulations from Im̂n. For empirical critical values, please see
Table 5.
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3 Correlation coefficient test

Filliben (1975) introduced the probability plot coefficient test for normal distributions. The
idea of the test is to compare the ordered observations with predicted order statistics of a
theoretical distribution. Let X[i] denote the ith largest observed datum ,X̃[i] the order statis-

tic median, X̄ the average observation and X̃ the population median, then the probability
plot correlation coefficient is given by the Pearson correlation coefficient

r =

n∑
i=1

(
X[i] − X̄

) (
X̃[i] − X̃

)
√

n∑
i=1

(
X[i] − X̄

)2
n∑
i=1

(
X̃[i] − X̃

)2
.

Filliben (1975) estimated the order statistic medians from the quantile function and later
the same approach was used for the Gumbel and other extreme-value distributions (Vogel
1986; Kinnison 1989). These approaches relied on numerical approximations to the plotting
positions between the order statistics and the order statistic medians or other measures of
location1 such as the plotting position of Gringorten (1963) which is unbiased only for the
largest observation.

The correlation coefficient test can be improved by comparing the ordered observations with
their expected values of a distribution. Let X(i) denote the ith smallest observation, E

[
X(i)

]
the expectation of it and E [X] the expected value of the theoretical population.

3.1 Density and expected value of order statistics

The density of f(i)(x) is (see e.g., Harter 1961)

f(i)(x) =
n!

(i− 1)!(n− i)!
F i−1(x) (1− F (x))n−i f(x)

and

E
[
X(i)

]
=

∞∫
−∞

f(i)(x) dx

The density of f(i)(x) can be simplified by

X(i) =d F
−1
(
U(i)

)
, (4)

1Plotting X[i] against M[i] yields and approximately linear plot.
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where U ∼ U(0, 1) and F−1 is the quantile function of X. Because2

fU(i)
(x) =

n!

(i− 1)!(n− i)!
xi−1 (1− x)n−i , x ∈ [0, 1]

the expected value of E
[
X(i)

]
can be reformulated (Sen 1959) as

E
[
X(i)

]
=

n!

(i− 1)!(n− i)!

1∫
0

F−1(x)xi−1(1− x)n−i dx .

3.2 Correlation coefficient test for the Gompertz distribution

The correlation coefficient test has the null hypothesis

H0 : F (x) = G(x; θ) .

If X ∼ Gompertz(a, b), then

F−1(x) =
1

b
log

(
1− b

a
log(1− x)

)
, a > 0, b ≥ 0 ,

and

E
[
X(i)

]
=

n!

b(i− 1)!(n− i)!

1∫
0

log

(
1− b

a
log(1− x)

)
xi−1(1− x)n−i dx .

The expected value of the population is (Missov and Lenart 2011)

E [X] =
1

b
e
a
bE1

(a
b

)
,

where En(z) =
∫∞

1
exp(−zt)/tn dt denotes the exponential integral (Abramowitz and Stegun

1965:5.1.4).

The estimated correlation coefficient is then

r̂
(
θ̂
)

=

n∑
i=1

(
X(i) − X̄

) (
Ê
[
X(i); θ̂

]
− Ê

[
X; θ̂

])
√

n∑
i=1

(
X(i) − X̄

)2
n∑
i=1

(
Ê
[
X(i); θ̂

]
− Ê

[
X; θ̂

])2
,

where θ̂ is the maximum likelihood estimate of θ = (a, b). The test statistic ranges from
[0, 1] and the null hypothesis is rejected if r̂ is lower than a critical value estimated by Monte
Carlo simulations (Table 6). For the distribution of the correlation coefficients, please see
Fig. 3.

2Note that the distribution function, FU(i)
(x) of the ith observation of a uniform distribution would be

equal to the regularized incomplete beta function, Ix(i, n− i + 1) (Abramowitz and Stegun 1965:26.5).
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4 Anderson-Darling test

The Anderson-Darling (1952) test is based on the difference between the empirical and the
theoretical distribution function F (x) and G(x),

W 2 = n

∞∫
−∞

[F (x)−G(x)]2 ψ(x) dG(x) ,

where ψ(x) is a weight function. As Anderson and Darling (1952: p. 194) notes, for ψ(x) := 1
W 2 will be the same as the Cramér-von Mises test statistic

T =
1

12n
+

n∑
i=1

{
2i− 1

2n
−G

[
X(i)

]}2

,

where X(i) is the ith smallest observation (Stephens 1974). Other weight functions are also
used to test the goodness-of-fit of extreme value distributions (e.g. Stephens 1977), most
notably ψ(x) := {G(x) [1−G(x)]}−1 that gives the Anderson-Darling test statistic (Shin
et al. 2011)

A2 = n

∞∫
−∞

[F (x)−G(x)]2

G(x) [1−G(x)]
dG(x)

= −n− 1

n

n∑
i=1

(2i− 1)
{

logG
(
X(i)

)
+ log

[
1−G

(
X(n−i+1)

)]}
. (5)

4.1 Extensions of the Anderson-Darling test

For testing the mortality of heterogeneous populations, the modified Anderson-Darling test
statistic (Sinclair et al. 1990) is of interest. It attributes a different weight function for the
upper and the lower tail

AU2 = n

∞∫
−∞

[F (x)−G(x)]2

1−G(x)
dG(x)

=
n

2
− 2

n∑
i=1

G
(
X(i)

)
−

n∑
i=1

(
2− 2i− 1

n

)
log
[
1−G

(
X(i)

)]
(6)

and

AL2 = n

∞∫
−∞

[F (x)−G(x)]2

G(x)
dG(x)

= −3n

2
+ 2

n∑
i=1

G
(
X(i)

)
−

n∑
i=1

2i− 1

n
logG

(
X(i)

)
(7)
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respectively. In a model where individuals have different levels of frailty (Vaupel et al. 1979)
that acts multiplicatively on their baseline level of mortality, there would be more robust
individuals (lower level of frailty) that would deviate in the upper tail from the homogeneous
(all individuals having the same frailty) distribution.

4.2 Anderson-Darling test for the Gompertz distribution

As previously, the null hypothesis of the Anderson-Darling test is

H0 : F (x) = G(x; θ) .

In case of the Gompertz distribution, θ = (a, b). By substituting

G(x; a, b) = 1− e−
a
b (ebx−1)

in either (5), (6) or (7), the Anderson-Darling test statistic is immediately given. Large
values of the statistic reject the null hypothesis. The critical values are defined by Monte
Carlo simulations (Table 7).

5 Moments test for the Gompertz distribution

An interesting, yet not very popular, goodness-of-fit test using moments was suggested by
Li and Papadopoulos (2002). Suppose X1, . . . , Xn are i.i.d. random variables characterized
by a c.d.f. F (x). We test a null hypothesis

H0 : F belongs to a parametric familyFθ, θ ∈ Θ

Suppose the k-th (k ∈ N) moment mk =
∫
xkdFθ(x) of Fθ exists and

g(m1, . . . ,mk) = 0 ∀θ ∈ Θ

for some function g. Then

√
n g(m̂1, . . . , m̂k)→d N(0, V (θ))

m̂i =
n∑
i=j

X i
j/n denotes the sample moment of order i (i = 1, . . . , k) and
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V (θ) = ∇g(m1, . . . ,mk)
T Σ ∇g(m1, . . . ,mk),

where Σ = ||σij||ki,j=1 has elements σij = mi+j − mimj and ∇g(m1, . . . ,mk) denotes the
gradient of g. We can choose g(x, y, z) = z − 3xy + x3 and construct the following statistic:

T =

√
n (m̂3 − 3m̂1m̂2 + 2m̂3

1)√
V (â, b̂)

∼ N(0, 1)

We use the expressions for m1,m2, and m3 calculated in Lenart (2012).

6 Test for the mean of the sample hazard

Let µ(x) be a non-parametric estimator of the hazard (e.g., Müller and Wang 1994) at age
x. Measure µ(X) the sample hazard where X = (X1, . . . , Xn) are the ages at death. Lenart
(2012) showed that â+ b̂ = µ̄ (X) in the case of the Gompertz distribution, where â and b̂ are
the maximum likelihood estimators of the Gompertz parameters and µ̄ (X) is the mean of
the hazard. In a discrete setting, µ̄ (X) would be approximated by the age-specific hazards
weighted by the number of events in the intervals between the discretization steps.

H0 : â+ b̂ = µ̄ (X)

To test the null hypothesis, we will use that

√
n
(
θ̂ − θ

)
→d N

(
0, I(θ̂)−1

)
,

where θ = (a, b) and I(θ̂) is the (observed) Fisher information matrix

I(θ) = − ∂2

∂θ2
log g(X; θ)

evaluated at the maximum likelihood estimates. The sum of two correlated normally dis-
tributed random variables

Y ∼ N(â, σ2
Y )

Z ∼ N(b̂, σ2
Z)

Y + Z ∼ N(â+ b̂, σ2
Y + σ2

Z + 2Cov(Y, Z))

is a normally distributed random variable. The inverse of the Fisher information matrix
yields the variance-covariance matrix (see Appendix A for the Gompertz distribution). Ac-
cording to the central limit theorem, when the sample size approaches infinity

M̄ − µ̄(X)→d N(0, σ2
µ̄) ,
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where M̄ corresponds to the population mean hazard and σ2
µ̄ = s2/n and s2 is the variance

of the sample. For finite size samples, consult the skewness of the distribution (please
see (Lenart 2012) for the Gompertz distribution) to decide whether the sample means are
normally distributed at sample size n. If

V ∼ N(µ̄(X), σ2
V )

and the sample mean is independent from the maximum likelihood estimators, then

Y + Z − V ∼ N(â+ b̂− µ̄(X), σ2
Y + σ2

Z + 2Cov(Y, Z) + σ2
V ) . (8)

Let F−1(x;NY ZV ) be the quantile function of the normal distribution with mean and variance
equal to the one in (8), then according to H0 at level α

F−1
(α

2
;NY ZV

)
≤ 0 ≤ F−1

(
1− α

2
;NY ZV

)
.

7 Nested test against the generalized extreme value

distribution

Let

fGEV (x;m, ξ, σ) =
1

σ

[
1 + ξ

(
x−m
σ

)]−( 1
ξ )−1

e−[1+ξ(x−mσ )]
− 1
ξ

m, ξ ∈ R, σ > 0 (9)

be the density function of the generalized extreme value distribution for the maxima, where
m is the location, ξ is the shape and σ is the scale parameter. As Willekens (2002) noted,
the Gompertz is a special case of the generalized extreme value distribution for the minima,
that is, when −x is substituted for x in (9). Moreover, let fGEV (x) be truncated at x = 0
(Elandt-Johnson 1976), b := 1/σ and m := 1/b log(a/b) :

fGEV (x; a, b, ξ) = b
[
1− ξ

(
bx− log

a

b

)]−1− 1
ξ
e(1−ξ log a

b
)
− 1
ξ−[1−ξ(bx−log a

b )]
− 1
ξ

then for ξ → 0, fGEV (x; a, b, ξ) goes to the Gompertz distribution. To test whether the
Gompertz distribution fits the data as well as the generalized extreme value distribution,

H0 : ξ = 0

a likelihood ratio test is employed

−2 log
L
(
g(x; â, b̂)

)
L
(
fGEV (x; â, b̂, ξ̂)

) ∼ χ2(1) ,

where L(·) denotes the likelihood function and g(·) the Gompertz distribution. The likelihood
ratio is evaluated at the maximum likelihood estimates of the two log-likelihood functions
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and by Wilks (1938) the limiting distribution of the likelihood ratio test statistic is the
χ2 distribution with degrees of freedom equal to the number of constraints under the null
hypothesis. Please see Fig. 4 for the distribution of the Anderson-Darling statistic.

Note that with ξ = 0, the generalized extreme value reduces to Type I extreme value, or
Gumbel distributions. The Gompertz distribution is a truncated Gumbel distribution for
the minima with additionally introduced correlation between the parameters. For detailed
analysis of the tests of the Gumbel distribution, please see Hosking (1984).

8 Power of the tests

To compare the tests, n = 50 and n = 200 samples were simulated from alternative distribu-
tions repeated 50000 times each. These alternatives distributions were Weibull, as it is often
used in survival analysis or reliability engineering, the Log-normal as another asymmetric
distribution, the Normal distribution as the distribution of life times were often assumed to
follow a normal distribution (Véron and Rohrbasser (2003) citing Wilhelm Lexis), the logis-
tic distribution as it is observed as the hazard function in many biological studies (Wilson
1994), the Gamma distribution because of its flexible shape and lastly, the Gamma-Gompertz
distribution (Vaupel et al. 1979) for a more complicated model in which the Gompertz distri-
bution is nested. The simulating parameters were attained by fitting each of the alternative
distributions to a random sample of a Gompertz distribution. Note that the normal and the
logistic distributions are the only symmetric distributions among the alternatives.

µ̄ r KL AD M LR
Weibull(10,80) 0.9664 0.0497 0.0653 0.0915 0.0974 0.0982

Log-normal(4.4,0.01) 0.8293 0.4793 0.3461 0.7822 0.3124 0.3965
Normal(80,10) 0.8641 0.5147 0.3015 0.5483 0.3791 0.4014
Logistic(80,5) 0.7225 0.4895 0.4602 0.6837 0.4101 0.4534

Gamma(71,1.1) 0.8131 0.6863 0.4391 0.7356 0.2710 0.5747
Gamma-Gompertz(0.001,0.1,0.2) 0.7049 0.0130 0.0670 0.0854 0.0869 0.0955

Table 1: Power of the goodness-of-fit statistics against alternative distributions with n = 50,
α = 0.05.

As Table 1 shows, the test for the mean rejected most of the alternative distributions for
sample size 50. However, at such a low sample size, it is difficult to get a reliable estimate
of the sample hazard and the test rejects also a similar proportion of simulated samples
from Gompertz distributions. Monte Carlo simulations (50000 iterations) show that for
sample sizes around 200, the probability of committing Type I error is about 20% at α =
0.05. When the sample size reaches 400, the probability of a Type I error decreases to the
expected 5% for α = 0.05. The sample hazard was estimated using locally optimal varying
kernels as described by Müller and Wang (1994). The second most powerful test was the
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Anderson-Darling test for all except the Weibull and the Gamma-Gompertz distributions.
Not surprisingly, the likelihood ratio test was the best to identify the differences between the
Gompertz and the Weibull distribution and was also effective against the Gamma-Gompertz
distribution. The modified Anderson-Darling test, with emphasis on the upper tail of the
distribution could distuinguish between Gompertz and Gamma-Gompertz distributions 12%
of the samples of size 50.

µ̄ r KL AD M LR
Weibull(10,80) 0.2616 0.1460 0.0049 0.2843 0.3542 0.5149

Log-normal(4.4,0.01) 0.5531 1.0000 0.9471 1.0000 0.6813 0.9491
Normal(80,10) 0.5765 0.9863 0.5971 0.9950 0.5631 0.9687
Logistic(80,5) 0.4704 0.9634 0.5553 0.9983 0.4773 0.9676

Gamma(71,1.1) 0.5952 0.9999 0.9089 0.9998 0.8129 0.9632
Gamma-Gompertz(0.001,0.1,0.2) 0.2214 0.0287 0.0006 0.3009 0.3939 0.2692

Table 2: Power of the goodness-of-fit statistics against alternative distributions with n = 200,
α = 0.05.

The rejection rate of the tests increases for larger samples with the exception of the test for
the sample mean. It seems that the most powerful tests for the Gompertz distribution are
the Anderson-Darling and the correlation coefficient tests, especially if they tests against a
less related distribution (log-normal, normal, logistic or gamma). If the test is against a
related distribution such as Weibull or Gamma-Gompertz, the efficiency of all tests drop.
Against the Weibull distribution, the likelihood ratio against the generalized extreme value
distribution works the best, its efficiency is lower for the Gamma-Gompertz model as the test
is not explicitly against it. It is more difficult to evaluate the power of the likelihood ratio
test against non-extreme value distributions. It has a relatively high rejection rate against
all of the other distribution but it is not an appropriate test against them as they are not
members of the family of extreme value distributions. The moments test performs best in
the Weibull and Gamma-Gompertz cases, yet has the weakest power in all other settings.

9 Application: goodness-of-fit to laboratory rat data

The goodness-of-fit tests defined above can be readily used to check if empirical data is
Gompertz distributed. As an example, individual life span data of rats will be used. The
analyzed data was collected by Vladimir N. Anisimov at the N.N.Petrov Research Institute
of Oncology, St.Petersburg, Russia to test carcinogenicity and it is now published in the
Biodemographic Database (BDB). Here we will use only the rats in the control group, n = 51
females and n = 46 males. The data is fully observed and the number of survivors was
recorded every day. Please see Figure 1) for the estimated hazard and the Kaplan-Meier
survival function and Table 3 for descriptive statistics of the dataset. The hazard estimation
was carried out by the same varying kernel width estimation procedure as mentioned earlier.
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The Gompertz fit to the data show vary wide confidence intervals which were estimated by
the delta method.

Sex n Min q1 x̃ x̄ q3 Max s IQR
Female 51 192.5 477.0 649.5 603.2 729.0 891.5 177.9 252
Male 46 185.5 399.5 604.0 559.1 747.5 893.5 219.4 348

Table 3: Descriptive statistics of life spans of 51 female and 46 male rats (days)

The goodness-of-fit statistics in general do not reject the null hypothesis that both the
distribution of death of both the male and the female rats is Gompertz. (Table 4) While the
maximum likelihood estimate of a of the male rats is higher than â of the female rats, the
estimated daily rate of aging parameter, b̂ is lower, leading to a cross-over of mortality later
in life. (Figure 1) This result is corroborated by the non-parametric estimates. However,
because of the low sample size, the confidence bands are very wide. In spite of that, by
looking at the goodness-of-fit statistics and their respective critical values in the appendix,
it can be seen that the null is not rejected either by the Anderson-Darling (0.384 < 0.63 and
0.55 < 0.62) and the correlation coefficient (0.991 > 0.973 and 0.983 > 0.976) test statistics
at α = 0.1. The Kullback-Leibler statistic does not reject the null hypothesis at α = 0.1
in the case of females (5.6× 10−6 < 0.25) but would reject it in the case of males even at
alpha = 0.01 (0.23 > 0.201 ). The likelihood ratio test also confirms that the Gompertz
distribution fits the data as well as the generalized extreme value distribution (its shape
parameter equals to 0) at α = 0.1 for both females (0.895 < 2.71) and males (2.165 < 2.71).
The quantiles of the normal distribution estimated by the test for the mean of the sample
hazard envelops 0 only at α = 0.01, otherwise it would reject the null. However, this test
is not reliable at this low sample size because of the difficulties of estimating the sample
hazard.

Sex â b̂ µ̄α=0.01 r KL AD LR
Female 5.7 × 10−5 0.007 -0.0014 – 0.0029 0.991 5.6× 10−6 0.384 0.895
Male 1.9× 10−3 0.005 -0.00012 – 0.0034 0.983 0.23 0.55 2.165

Table 4: Calculated Gompertz goodness-of-fit test statistics to the dataset of 51 female and
46 male rats
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Figure 1: Hazard and survival of the rat data. On the left panel, the solid line corresponds
to the non-parametric hazard estimate, the dashed line to the Gompertz fit and the dotted
lines are the 95% confidence intervals of the fitted Gompertz hazard.

10 Discussion

The comparison of the power of the tests show that the Anderson-Darling statistic is the
most powerful in rejecting the null that the empirical distribution comes from the Gompertz
distribution when it was simulated from an alternative distribution. The Anderson-Darling
statistic implemented by its computing formula is also the simplest and the quickest to run,
and an important advantage of it is that for low values of a, the distribution of the statistic
is independent from the Gompertz a and b parameters.

The correlation coefficient test also efficiently refutes other alternative distributions, however,
when the alternative distribution is closely related to the Gompertz, such as in the case of
Weibull and Gamma-Gompertz distributions, the power of the correlation coefficient test
drops. As Legates and McCabe Jr (1999) noted, the tests based on correlation are overly
sensitive to outliers and insensitive to proportional differences between the expected and the
observed values.

The main problem with testing the mean of the sample hazard lies in the estimation of the
sample hazard. Here locally optimal varying kernels were used (Müller and Wang 1994) and
as the variance of the kernel hazard estimate was not taken into account, the probability of
committing Type I error at α = 0.05 reduced to 5% only by n = 400. Other sample hazard
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estimators would necessarily yield different efficiency and critical values.

Juxtaposed with the results for the Gumbel distribution (Pérez-Rodŕıguez et al. 2009), the
Kullback-Leibler test performs unexpectedly poorly relative to the other tests. The main
disadvantage of the Kullback-Leibler test lies in the estimation of the sample entropy and
choosing the optimal window width for that as it can vary from dataset to dataset with
the same sample size and a different window width entails different critical values of the
statistic. In the Appendix, the optimal window width is not reported as it was optimized
at each draw from the Gompertz distribution, therefore the critical values correspond to
an average of the optimal window widths that can be expected when sampling from the
Gompertz distribution.

The likelihood ratio test is a powerful test when the alternative distribution is from the
generalized extreme value family. A positive externality of the test is that the shape param-
eter of the generalized extreme value distribution, ξ has to be estimated during the testing
procedure. If ξ < 0 and the likelihood ratio at the chosen significance level rejects the null
hypothesis that ξ = 0, than the empirical distribution can be better fitted by a Weibull
distribution than by a Gompertz. If ξ > 0, the empirical distribution is more likely to be
Fréchet-type than Gompertz (Jenkinson 1955).
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A Variance-covariance matrix of the maximum likeli-

hood estimators of the Gompertz parameters

The variance-covariance matrix, based on the inverse of the observed Fisher information, for
the Gompertz distribution is (
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B Distribution of test statistics

The Gumbel distribution is a location-scale distribution, therefore the test statistics of it
are independent on the location or the scale parameters. However, in the case of the Gom-
pertz distribution the test statistics differ by the a parameter. Therefore, the different a
parameters require the definition of different corresponding critical values. To test whether
the distribution of the test statistics differ also by the b parameter 50000, n = 50 samples
were drawn from the Gompertz distribution with a = {0.0000015, 0.00015, 0.015, 0.15} and
b = {0.08, 0.1, 0.12, 0.14, 0.16} and the corresponding Kullbeck-Leibler, correlation coefficient
and Anderson-Darling test statistics calculated for them.

B.1 Distribution of the Kullbeck-Leibler discrimination informa-
tion statistic

Kullback−Leibler statistic
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Figure 2: The distribution of the Kullback-Leibler discrimination information statistic for
50000 samples of size 50 drawn from the Gompertz distribution at m = 5 for each combina-
tion of the Gompertz parameters.
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B.2 Distribution of the correlation coefficient statistic

Correlation coefficient
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Figure 3: The distribution of the correlation coefficient statistic for 50000 samples of size 50
drawn from the Gompertz distribution for each combination of the Gompertz parameters.

B.3 Distribution of the Anderson-Darling statistic

Anderson−Darling statistic
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Figure 4: The distribution of the Anderson-Darling statistic for 50000 samples of size 50
drawn from the Gompertz distribution for each combination of the Gompertz parameters .
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C Empirical critical values

C.1 Critical values of the Kullback-Leibler discrimination infor-
mation statistic

â
n α 0.000001 0.0001 0.01 0.1 0.2

25
0.1 0.2189 0.2190 0.2197 0.2207 0.2174

0.05 0.2515 0.2507 0.2504 0.2497 0.2465
0.01 0.3196 0.3202 0.3182 0.3155 0.3111

50
0.1 0.1399 0.1392 0.0980 0.1772 0.1863

0.05 0.1594 0.1584 0.1359 0.2005 0.2061
0.01 0.2010 0.2003 0.1943 0.2430 0.2435

75
0.1 0.0278 0.0273 0.0323 0.0448 0.0485

0.05 0.0432 0.0429 0.0486 0.0617 0.0653
0.01 0.0763 0.0781 0.0856 0.0971 0.0989

100
0.1 0.0506 0.0511 0.0586 0.0651 0.0655

0.05 0.0621 0.0624 0.0692 0.0762 0.0766
0.01 0.0862 0.0872 0.0932 0.0989 0.0990

150
0.1 0.0631 0.0639 0.0772 0.0789 0.0813

0.05 0.0732 0.0734 0.0839 0.0860 0.0901
0.01 0.0914 0.0916 0.0983 0.0999 0.1089

200
0.1 0.0495 0.0507 0.0825 0.0812 0.0759

0.05 0.0598 0.0608 0.0889 0.0877 0.0825
0.01 0.0799 0.0806 0.1005 0.1003 0.0954

300
0.1 0.0392 0.0410 0.0337 0.0434 0.0508

0.05 0.0464 0.0474 0.0405 0.0507 0.0573
0.01 0.0581 0.0586 0.0534 0.0641 0.0694

500
0.1 0.0128 0.0150 0.0224 0.0239 0.0243

0.05 0.0180 0.0194 0.0258 0.0275 0.0277
0.01 0.0262 0.0273 0.0322 0.0341 0.0345

1000
0.1 2E-6 0.0007 0.0231 0.0240 0.0240

0.05 0.0005 0.0062 0.0253 0.0263 0.0264
0.01 0.0138 0.0177 0.0295 0.0305 0.0306

Table 5: Empirical critical values of the Kullback-Leibler discrimination information statistic
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C.2 Critical values of the correlation coefficient statistic

â
n α 0.000001 0.0001 0.01 0.1 0.2

25
0.1 0.9575 0.9596 0.9758 0.9763 0.9743

0.05 0.9460 0.9498 0.9705 0.9708 0.9684
0.01 0.9153 0.9261 0.9576 0.9572 0.9525

50
0.1 0.9731 0.9755 0.9875 0.9869 0.9852

0.05 0.9650 0.9696 0.9850 0.9840 0.9817
0.01 0.9405 0.9558 0.9789 0.9768 0.9731

75
0.1 0.9798 0.9824 0.9915 0.9909 0.9895

0.05 0.9734 0.9783 0.9898 0.9890 0.9870
0.01 0.9533 0.9689 0.9859 0.9839 0.9807

100
0.1 0.9833 0.9861 0.9936 0.9930 0.9917

0.05 0.9783 0.9830 0.9923 0.9915 0.9899
0.01 0.9622 0.9756 0.9895 0.9880 0.9851

150
0.1 0.9875 0.9902 0.9957 0.9952 0.9942

0.05 0.9835 0.9881 0.9948 0.9942 0.9929
0.01 0.9706 0.9831 0.9929 0.9917 0.9896

200
0.1 0.9895 0.9923 0.9967 0.9963 0.9955

0.05 0.9863 0.9907 0.9961 0.9955 0.9945
0.01 0.9759 0.9870 0.9947 0.9937 0.9920

300
0.1 0.9905 0.9942 0.9977 0.9974 0.9969

0.05 0.9882 0.9931 0.9973 0.9969 0.9962
0.01 0.9814 0.9907 0.9963 0.9957 0.9944

Table 6: Empirical critical values of the correlation coefficient statistic

For sample sizes over 300, the critical values of the correlation coefficient statistic was omitted
as it the numerical computation of the statistic is not entirely reliable as it requires to
compute high values of factorials. In practice, the n!/b(i − 1)!(n − i)! term is better to be
calculated by 1/β(i, (n − i + 1)) as the beta function can be counted until higher values
than the factorials separately. For even larger samples, samples can be drawn from the
quantile function by (4) by noting that the rank percentiles (rank of the observation divided
by sample size + 1) are also bounded by 0 and 1 (see e.g., Kinnison 1989).
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C.3 Critical values of the Anderson-Darling statistic

â
n α 0.000001 0.0001 0.01 0.1 0.2

25
0.1 0.6273 0.6276 0.6300 0.6769 0.6920

0.05 0.7461 0.7482 0.7487 0.8166 0.8423
0.01 1.0243 1.0227 1.0291 1.1836 1.2250

50
0.1 0.6338 0.6252 0.6238 0.6839 0.7126

0.05 0.7545 0.7473 0.7477 0.8262 0.8666
0.01 1.0380 1.0295 1.0405 1.1804 1.2287

75
0.1 0.6299 0.6288 0.6295 0.6830 0.7082

0.05 0.7537 0.7483 0.7489 0.8261 0.8560
0.01 1.0278 1.0341 1.0356 1.1746 1.2155

100
0.1 0.6316 0.6278 0.6312 0.6836 0.7113

0.05 0.7525 0.7506 0.7521 0.8227 0.8657
0.01 1.0326 1.0279 1.0453 1.1618 1.2333

150
0.1 0.6316 0.6299 0.6263 0.6870 0.7094

0.05 0.7533 0.7510 0.7518 0.8303 0.8598
0.01 1.0389 1.0483 1.0415 1.1833 1.2280

200
0.1 0.6347 0.6290 0.6306 0.6851 0.7100

0.05 0.7509 0.7526 0.7570 0.8299 0.8621
0.01 1.0347 1.0427 1.0370 1.1688 1.2292

300
0.1 0.6351 0.6319 0.6290 0.6916 0.7128

0.05 0.7559 0.7580 0.7496 0.8398 0.8700
0.01 1.0453 1.0502 1.0352 1.1705 1.2327

500
0.1 0.6323 0.6331 0.6334 0.6843 0.7152

0.05 0.7516 0.7531 0.7577 0.8308 0.8696
0.01 1.0331 1.0366 1.0543 1.1642 1.2444

1000
0.1 0.6405 0.6339 0.6289 0.6843 0.7166

0.05 0.7584 0.7538 0.7530 0.8267 0.8698
0.01 1.0448 1.0425 1.0498 1.1651 1.2455

Table 7: Empirical critical values of the Anderson-Darling statistic

Please note that the Anderson-Darling statistics are stable over all low values of â and
increasing by â. The critical values also increase slightly as the sample size increases. Similar
trend was found by Shin et al. (2011) for the modified Anderson-Darling test.
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