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Abstract

We use genome-wide data from the third generation respondents of the Framing-

ham Heart Study to estimate heritability in body mass index using different quantities

of the measured genotype. Heritability decreases rapidly when SNPs implicated by a

genome-wide association study are removed but shows essentially no decline when SNPs

implicated by a gene-environment interaction in a second genome-wide analysis are re-

moved. This second result is highlighted by our additional finding that the SNPs which

explain heritability amongst a subsample defined by higher educational attainment explain

no heritability of the heritability in the lower education group, and vice-versa. Finally, we

do find consistent heritability estimates when we compare family-based estimates versus

those based on measured genotype.
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Evidence from twin and sibling studies suggests that most behavioral phenotypes of in-

terest to social demographers evidence moderate to large heritability estimates. Traits such

as smoking, drinking, obesity, and exercise are all found to be roughly 40-60% heritable.

These large estimates of genetic influence have been increasingly criticized because, to date,

genome-wide association studies (GWAS) have not uncovered SNPs or SNP clusters that

explain more than 1-2% of phenotypic variance. The so called “missing heritability” (Maher,

2008; Manolio et al., 2010) has defined the first generation of GWAS studies and has led to

a re-thinking of standard approaches.

From a social science perspective, BMI is an interesting phenotype since it has strong

biological and social components. There is strong evidence that genes determine individual

differences in physical weight and weight gain (Haberstick et al., 2010; Fox et al., 2007;

W. Yang, Kelly, & He, 2007). There is also a great deal of variability in the estimated

influence of genotype on BMI; with an average of roughly 60%, heritability estimates for BMI

range from as little as 5% to as high as 90% (Loos & Bouchard, 2003). This variation is

in line with the GxE perspective that anticipates differential associations between genotype

and phenotype across different environments (Shanahan & Hofer, 2005) and some work has

demonstrated the social moderation of genetic factors linked to obesity related phenotypes

(Lee, Lai, Ordovas, & Parnell, 2011; J. D. Boardman et al., 2012).

More recent models that use genetic similarity among unrelated persons have begun to

provide estimates of genetic influence that are similar to traditional behavior genetic results

(Yang et al. 2010). These methods have been organized under the umbrella of GCTA and

a toolkit for these analyses is available to all researchers.1 To date, these methods have

been used to characterize the relative contribution of additive genetic influences on overall

phenotypic variance. No existing study has used these methods to explore the relevance

of the gene-environment interaction perspective. The purpose of this study is to use the
1http://www.complextraitgenomics.com/software/gcta/
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GCTA methods to decompose the variation of BMI into components that are due to main

and interactive components. We do this by estimating heritabilities after repeatedly removing

SNPs that were identified by various genome-wide analyses as top hits. Our primary finding

is that the top hits identified by a genome-wide search for SNPs that differentially predict

phenotype by environment account for virtually none of the heritability.

Methods

The GCTA model (J. Yang, Lee, Goddard, & P.M., 2011) has become a popular alternative

to using sibling and twin data to estimate heritability. Rather than using expected genetic

similarity, such as of .5 and 1 in the case of dizygotic and monozygotic twins, the GCTA

models use the empirical genetic similarity score the characterizes genetic similarity above

and beyond what we would expect by chance (e.g., IBS). This NxN genetic relationship

matrix is then used to partition variance into components that are due to measured genetic

associations or those due to environmental factors.

Our contribution is to focus on the results from removing different blocks of SNPs when

calculating GCTA-based heritablities. That is, we remove blocks of SNPs and subsequently

recalculate heritability to see how much of the genetic variation is explained by the removed

SNPs. The SNPs are removed in specific orders, typically based on a ranking of their asso-

ciated p-values from GWAS analyses. The first model is a typical GWAS:

Yi |Gi , Gpi , Ei , ZZZ iii ∼ N
[
b0 + b1Gi + b2G

p
i + b3Ei + bbb4ZZZ iii , σ

2
1

]
(1)

where bold characters represent multidimensional components (either vectors or matrices).

Equation 1 describes BMI (Y ) as a function of genes (G) and other factors. First, a control

for parental mating type (Gp) is included. Parents may both be homozygous for the minor

allele (AA, AA), one may be homozygous for the minor and the other homozygous for the
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alternate allele (AA, BB), they may both be heterozygous (AB, AB), etc. In total, there are

six potential mating types. The use of trios (genetic data for parents and their offspring)

enables researchers to look at within family distributions of alleles and this approach is robust

to population stratification. Second, a control for environment (Ei), an indicator of whether

an individual has obtained a college degree is included. Finally, additional controls for gender

and age (ZZZ iii) are also included.

We then use a genome-wide gene-environment interaction (GWGEI) model that controls

for gene-environment correlation as well as population stratification. This model is proposed

by Moreno-Macias, Romieu, London, and Laird (2010) and has been shown to provide valid

and reliable GWGEI estimates. The model is:

Yi |Gi , Gpi , Ei , ZZZ iii ∼ N
[
b0 + b1Gi + b2G

p
i + b3Ei + bbb4ZZZ iii + b5GiEi + b6G

p
i Ei , σ

2
2

]
(2)

This model differs from the above in the introduction of the interactions. The first interaction

(b5GiEi) allows for the effect of genotype to differ by environment. The second interaction

(b6G
p
i Ei) reduces the risk of gene-environment correlation which may have important influ-

ences on GxE parameter estimates. This model is comparable to the FBAT approach (Laird,

Horvath, & Xu, 2000; Laird & Lange, 2006) that has been successfully used to identify SNPs

linked to obesity (Herbert et al. 2006). We estimate all models using the lm procedure in R

(R Core Team, 2012).

The models above emphasize allelic associations and corresponding interactions one SNP

at a time. Researchers have recently adapted existing quantitative genetic modeling tech-

niques to include genetic similarity among unrelated individuals (J. Yang et al., 2010, 2011).

These methods (described below) have been organized into the GCTA suite of genome wide

association tools. Rather than estimating the cumulative influence of all known causal loci

(which are, in principle, unknown), these models estimate a relationship matrix for all un-

related persons. They characterize the genetic relationships between individuals j and k
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individual across all genetic markers i with minor allele frequency pi as:

Ajk =
1

n

n∑
i=1

(xi j − 2pi)(xik − 2pi)
2pi(1− pi)

. (3)

Related pairs will have values that, on average, correspond to the fixed values in traditional

behavioral genetic models (e.g., siblings will have an average of .5) but the inclusion of

family members can artificially inflate heritability estimates because the shared environment

is subsumed in the family coefficient. As such, these researchers recommend eliminating pairs

with Ajk estimates in excess of .025. Then an OLS estimate of b1 in the below model:

E
[
(bmij − bmik)2|Ajk

]
= b0 + b1Ajk

provides an unbiased estimate of −2σ2g and the genetic variance is simply returned as −b1/2.

Taken as a proportion of the overall phenotypic variance this method provides an assumption

free estimate of additive genetic influence and corresponding standard error estimates for

each of the parameters.

Data

The study sample for this project was derived from the Framingham SNP (Single Nucleotide

Polymorphism) Health Association Resource (SHARe, version 6) as available through NCBI’s

database of Phenotypes and Genotypes (dbGaP). The analysis for this study focused on the

third generation of the Framingham Heart Study (FHS, Splansky et al., 2007). The original

cohort of the FHS was first assessed in 1948 and nearly 25 years later their children and many

of their spouses participated in the offspring cohort study (W2). Then, in 2002, roughly 4000

adults who had at least one parent in the offspring cohort took part in the third generation

(W3) cohort. This cohort was examined for a variety of different morbidities using clinical and
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laboratory assessments. Crucially, study participants were measured for height and weight.

Table 1 presents descriptive statistics for the FHS W3 sample that we use in our analysis

by educational status. Those without a college degree have an average BMI that is 1.45

units higher than those with a college degree (p<.001). This is a moderate effect size and

translates to roughly 10 additional pounds for a 140 pound adult who is 5’8”. There are

no gender differences by educational attainment but we do see that the college educated

sample is slightly younger. We include these controls in the genome wide association models

described below.

These samples were made available by the Framingham SHARe resource which contains

genotypes for all respondents using the Affymetrix 5.0 genotyping platform. After reducing

the Framingham SHARe data set to trios with complete (non-missing) genetic information

(e.g., genotypes for biological mother, biological father, and focal subject) our analytic sample

includes 1,967 W3 respondents. We drop SNPs with minor allele frequencies of less than

5% and those that do not meet Hardy Weinberg criteria.2 This initial pruning was done in

PLINK and 256,884 SNPs met this criteria (full set of SNPs are available upon request).

Descriptives for the phenotype and individuals used here are shown in Table 1. The W3

respondents had higher average BMIs (26.6) than the W2 respondents (25.5). Of the W3

respondents, those with a college degree had lower BMIs than those without (26.0 compared

to 27.4). Heritabilities (using the GCTA approach described below) were also computed

based on the full W3 sample as well as when it was split by having a college degree. For the

full sample, the heritability of BMI was 0.5 although heritabilities were higher (though not

significantly so) in the samples split by education.

2The pruning of the SNPs was done in the full Framingham sample, not in the subsample of the W3
respondents.
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Table 1: Descriptive statistics for BMI

Mean (SD) N

W2 25.5 (4.18) 1624

W3 26.6 (5.44) 1979

W3 College 26.0 (5.2) 1103

W3 Non-College 27.4 (5.6) 864

h2 (SE)* N

W3 0.50 (0.05) 1979

W3 College 0.60 (0.08) 1103

W3 Non-College 0.53 (0.09) 864
* Based on GCTA estimates.

Results

Figure 1 compares the declines in heritability as SNPs are removed in blocks of 5000 in four

different orders. When no SNPs are removed (the point where all four curves touch on the

y-axis), heritabilities are all identical. Consider first the line with the most severe negative

slope. This line, labeled GWAS, represents the repeated removal of the SNPs that had the

lowest p-values from the GWAS analysis (p-values for the estimated b1 coefficients from

Equation 1). Of these SNPs, the first 50,000 are clearly those that explain nearly all of the

heritability. The line above, labeled GWGEI-G, removes blocks of 5000 SNPs as ranked by

lowest p-values for the main effect of the SNP from the GWGEI analysis (the b1 coefficient

from Equation 2). The general pattern is roughly similar to removal based on the GWAS

analysis.

The line labeled GWGEI-GxE is the most interesting of the four. This line is based on

removing SNPs as ordered by the p-values of the SNP-environment interaction from the
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GWGEI analysis (the b5 coefficient from Equation 2). The first 200,000 SNPs, as ordered

by this analysis, explain only a fraction of the overall heritability. This curve can be compared

to the curve labeled Random which is based on removing SNPs that are randomly ordered.

Essentially, the top hits from the GWGEI-GxE SNPs explain no more of the heritability than

randomly chosen SNPs. We believe that this finding raises questions about this type of GWAS

work, a claim that we elaborate on in the discussion.

Figure 2 is based on a separate set of GWAS analyses. The same model as in Equation 3

is used except there is no control for environment (Ei does not appear). Instead, the analysis

is run separately on those with and without a college degree. The appropriately labeled curves

in Figure 2 correspond to these separate analyses. Note that for both groups, the top hits

in the GWAS explain the majority of the heritability using fewer SNPs than in the data as a

whole. This can be observed by comparing the No College and College lines to the GWAS

line, which is a replication of the line from Figure 1 (note that the scale of the x-axis has

changed as well).

In contrast, the curves at the top of Figure 2 remove SNPs for the groups as they are

ordered from the GWAS in the other group. So, the line labeled No College, Alternate SNPs

computes heritability for the group of individuals who did not finish college based on removing

SNPs in the order they were ranked from the GWAS using the college graduates. What is

remarkable is that essentially no heritability is explained by this process. This finding suggests

to us that the GWAS estimates are extremely sensitive to the choice of sample.

GCTA compared to family-based heritabilities

The GCTA approach discussed here utilized genetics data to compute heritability estimates,

but the family-based structure of Framingham allows us to compare this estimate to tradi-

tional heritability estimates based on family trios (mother, father, child). Using the approach

in Rabe-Hesketh, Skrondal, and Gjeesing (2008) and the Stan Development Team (2012)
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Figure 1: Heritability as a function of remaining SNPs: Removed SNPs for different curves
are ordered by p-values from corresponding genome-wide analyses.
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Figure 2: Heritability as a function of remaining SNPs: Removed SNPs for different curves are
ordered by p-values from corresponding genome-wide analyses done separately on respondents
that had and had not completed college separately.

0 20000 40000 60000 80000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

SNPs Removed

H
er

ita
bi

lit
y

No College

College
GWAS

GWGEI−GxE

No College, Alternate SNPs

College, Alternate SNPs

10



Figure 3: Comparison of GCTA and family-based heritability estimates
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software, we obtained a Bayesian estimate for the heritability of BMI. This approach allowed

us to also control for age and gender of respondents. Estimates were centered around 0.355

with a 95% CI from 0.34 to 0.4. A GCTA analysis performed using both waves 2 and 3

(N=3603) led to a heritability of 0.42 (0.03). However, this GCTA estimate is not directly

comparable due to the family-based estimate due to the presence of the covariates. An addi-

tional GCTA estimate that controlled for age and gender was only slightly lower, 0.41 (0.03).

A comparison of the estimates for heritability in each approach is shown in Figure 3. We find

it reassuring that the two approaches are yielding roughly similar results and suggest some

reasons for why the family-based approach might be computing smaller heritability estimates

in the discussion.
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Discussion

This paper focused on the heritability that remained in a group of individuals after removing

SNPs in different orders. Figure 1 compared the heritability of BMI in the third generation

Framingham after removing SNPs as they were ordered by their p-values in different genome-

wide association analyses. Our first main result was a demonstration that the top hits

indicated by a traditional GWAS explained nearly all of the heritability. In contrast, those

hits indicated by a gene-environment interaction explained essentially none of the heritability.

The second main result is shown in Figure 2. The key point is that the top hits from a GWAS

using only those that graduated from college explained none of the heritability for those that

did not attend college. The opposite version (heritability for those who attended college after

removing top hits from a GWAS on those that did not attend college) was also true. This

suggests that SNP effect estimates are potentially extremely sensitive to environment.3

The third main result was a comparison of heritability estimates based on measured genoy-

type versus family structure. The estimates were roughly comparable, which is especially

interesting given that the heritability estimates in Figure 3 are based on different sources

of information. The family-based estimate uses only indicated familial relationships between

waves 2 and 3 while the GCTA estimate is based on measured phenotype. Moreover, the

GCTA estimate explicitly excludes pairs with a genetic relationship over some (relatively low)

threshold so that family pairs don’t bias the estimate due to the shared environment. The

fact that the GCTA estimate of heritability is higher than the family-based estimate is inter-

esting. One potential problem is that the family-based estimate isn’t accounting for the fact

that some families have multiple siblings. However, this would probably bias this estimate

upwards and so is unlikely to explain the difference.

The results of this research echo those of J. Boardman et al. (2013) which question

3It is worth noting that we also found, in J. Boardman et al. (2013), that SNPs are measured with sufficient
noise that they fail to replicate in a random split of the Framingham data.
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the contribution of genetic studies that focus on specific SNPs for social science in general,

especially given the limited sample sizes that characterize most of the studies in question. On

the other hand we do think that information based on the whole genome could be quite useful.

Heritabilities are one approach that can potentially provide information about genetic causes

of behavior, but working strictly with heritabilities might be limiting since they don’t allow

one to simultaneously control for genetic and environmental factors. One possibility might

be the approach suggested in Zhou and Stephens (2012), but the computational demands

of this approach are relatively extreme. We hope to explore less demanding alternatives in

future research.
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