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Abstract 
 

We extend the single-sector endogenous growth model to allow for a general demographic structure. 

The model shows that due to the “generational turnover term,” the equilibrium growth rate is less than 

that of a representative agent model.  We find the local dynamics about the balanced growth path (bgp) 

to be unstable, implying that the bgp is the only viable equilibrium.  Using numerical simulations, we 

show that the economic consequences of a change in the population growth rate differ substantially, 

depending on the source of the demographic change.  Finally, we analyze the relationship between 

changes in the demographic structure and what we call the “natural rate of wealth inequality”. 
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1. Introduction 
 

During the last half century, the demographic structure of all developed nations changed 

dramatically. Both fertility rates and mortality rates declined and are predicted to further do so for 

years to come. At an individual level, a decrease in mortality implies a longer lifespan, while at an 

aggregate level it means that the relative share of the elderly in society increases.  Similarly, a 

decline in fertility implies that the inflow of young individuals into society is decreasing.  Naturally, 

the changing demographic structure has strong implications for individual, as well as aggregate, 

economic outcomes particularly over the long term.  Despite this, demographic structural aspects 

play a surprisingly small role in most macro models of economic growth.
1
 

Demographic features were first introduced into macroeconomic models in the form of the 

overlapping generations model pioneered by Samuelson (1958) and Diamond (1965) [SD]. In its 

canonical form, an individual lives for 2 periods, period 1 when he/she is young and period 2 when 

he/she is old.
2
  Some years later, a more probabilistic treatment of demographic factors was 

introduced via the continuous-time overlapping generations model of Blanchard (1985), Buiter 

(1988), and Weil (1989) [BBW]. In this set-up individuals face a constant probability of death over 

their lifespan and at each instant of time a new cohort is added to the economy.
3
 

More recently, the Blanchard-Buiter-Weil framework has been extended to allow for a more 

realistic representation of individual and aggregate demographic structures.  Bommier and Lee 

(2003) and d’Albis (2007) employ very general survival functions, while Boucekkine et al. (2002), 

Heijdra and Romp (2008), and Mierau and Turnovsky (2011) introduce empirically plausible 

demographic structures to study a range of theoretical and empirical issues.  Although most of the 

contributions have dealt with exogenous growth, recently d’Albis and Augeraud-Véron (2009), 

Heijdra and Mierau (2012), and Bruce and Turnovsky (2011) have embedded the rectangular, the 

Boucekkine et al. (2002), and the de Moivre (1725) mortality functions, respectively, into the single-

                                                 
1
 Consulting any of the leading textbooks on modern economic growth theory reveals that the representative agent model 

remains the dominant paradigm; see, for instance Acemoglu (2009) for the most recent and comprehensive treatment. 
2
 The SD model has been used and extended extensively to allow for a variety of features (de la Croix and Michel, 2002) 

or many more periods (Auerbach and Kotlikoff, 1987). 
3
 An important feature of the BBW model is the existence of perfect annuity markets which was first introduced by Yaari 

(1965) in the context of a partial equilibrium life-cycle model. 
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sector endogenous growth framework of Romer (1986).
4
 

In this paper, we further develop the relationship between the demographic   and economic 

growth. In particular, we construct a single-sector endogenous growth model with a rich 

demographic structure to study the impact of changes in the population growth rate on the economic 

growth rate and on the level of wealth inequality. In this respect we advance the work of d’Albis and 

Augeraud-Véron, Heijdra and Mierau, and Bruce and Turnovsky.  Notably, in contrast to previous 

contributions, we do not rely on a specific parameterized survival function for our key analytical 

results.  Hence, we are able to extend a number of earlier propositions to a general demographic 

composition.  In addition, we are able to provide a complete characterization of the local dynamics 

in the neighborhood of the balanced growth path, establishing that it is in fact the only viable and 

sustainable equilibrium.  Finally, we conduct numerical analysis simulations, which provide insights 

into the relation between the population growth rate and the economic growth rate, and a novel 

analysis of the relationship between the demographic structure and wealth inequality. 

The economy we consider is populated by overlapping generations of individuals that differ 

only with respect to their age. An important feature of the model is that as agents age, their 

probability of death increases. The production side of the model consists of many individual firms 

that exert an investment externality on each other so that, in the aggregate, the equilibrium sustains 

endogenous growth in the sense of Romer (1986).  For the theoretical part of the analysis we are able 

to establish several propositions relating to the relationship between the demographic and the 

macroeconomic structure.
5
 

First, we show that the demographic structure imposes a negative drag on the growth rate of 

aggregate consumption, through the “generational turnover term”.  This refers to the reduction in 

aggregate consumption due to the addition of newborn agents having no accumulated assets, 

                                                 
4 We may note that the de Moivre function, which is a special case of the Gompertz (1825) function, traditionally 

employed by demographers, offers the pedagogic advantage that it embeds the SD and BBW survival functions as two 

polar cases.  However, it does not fit the data as well as does the Boucekkine et al. function.  The “rectangular” mortality 

function has the characteristic that the agent survives with probability one for a fixed period, at which time he/she dies.  

It is essentially the assumption made in the Samuelson-Diamond model, except the length of life is potentially variable. 
5
 In developing our model we have tried to work within the “small-model economics” tradition, this implies that our 

model abstracts from numerous real- life features such as a pension system, retirement and uncertainty. These 

abstractions, however, allow us to highlight very clearly the “transmission mechanisms” that are driving the results of the 

model (Turnovsky, 2011). 
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together with the departure of agents with accumulated lifetime assets.  Second, we establish the 

existence of potentially two equilibrium growth rates.  However, one of these is shown to be non-

viable, in that it violates the transversality condition of the individual maximization problem, 

consistent with a similar result obtained by Bruce and Turnovsky (2011).  The other is indeed a 

consistent, sustainable, interior, equilibrium growth rate.  This finding effectively extends a related 

result by d’Albis and Augeraud-Véron (2009) from a rectangular demographic structure to a general 

one.  Finally, we show that the growth rate associated with the feasible equilibrium is slower than 

the growth rate that would prevail in a representative agent economy, this being a consequence of 

the negative drag arising from the generational turnover term. 

In general, the global dynamic analysis of an overlapping generations model having a 

realistic demographic structure is intractable.  In view of this, we approximate and linearize the 

dynamic system around the balanced growth path. This allows us to establish, numerically, that 

away from steady state the system is unstable, so that the only viable equilibrium is for the economy 

to always be on its balanced growth path.  This characteristic, associated with the standard 

representative agent endogenous growth model of Romer (1986), extends to the overlapping 

generations model having a very general demographic structure.
 6

 

We employ our model to perform two major numerical analyses.  First we ask how a 0.5 

percentage point increase in the population growth rate affects the economic growth rate?  We find 

there to be a stark contrast between the economic consequences of a change in the population growth 

rate that is driven by an increase in the fertility rate, on the one hand, and a change that is driven by a 

decrease in the mortality rate, on the other. While the former leads to a slight decline in the 

economic growth rate, the latter leads to a substantial increase in the economic growth rate. 

These findings, relating the population growth rate and the economic growth rate, can be best 

understood by referring to the empirical study of Kelly and Schmidt (1995).  They summarize the 

difference by interpreting newborns as “resource users” with little accumulated wealth, and working 

adults with their accumulated capital as being “resource creators”. While an increase in the birth rate 

                                                 
6
 In this respect we generalize previous analyses, embedding the Blanchard (1985) demographic structure into the one-

sector Romer (1986) model, and conclude that the only viable equilibrium is for the economy always to be on its 

balanced growth path.  
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increases the former, a decrease in the mortality rate increases the latter.  The positive relationship 

between a decrease in mortality and an increase in the growth rate is documented empirically by 

Bloom et al. (2007) and Lorentzen et al. (2008), who both show that high levels of adult mortality 

are associated with low levels of savings and growth. In a cross-sectional analysis, Sala-i-Martin et 

al. (2004) document a positive relationship between life-expectancy and economic growth, and a 

negative relationship between fertility and growth. 

As a result of the contrasting impacts of fertility and mortality driven changes in the 

population growth rate on the economic growth rate, the empirical evidence linking the two growth 

rates is generally ambiguous. Indeed, while Kelly and Schmidt (1995) obtain a negligible relation 

between the population growth rate and the economic growth rate for the 1960s and 1970s, they find 

a negative effect in the 1980s. Similarly, Sala-i-Martin et al. (2004) find that the direction of the 

impact of the population growth rate on the economic growth rate is unclear.  Our analysis suggests 

that these ambiguous empirical results can be reconciled by focusing on the sources of demographic 

change.  That is, while a positive relationship between the population growth rate and the economic 

growth rate is associated with a drop in the mortality rate, a negative relationship is associated with 

an increase in the fertility rate. 

The second numerical exercise we conduct involves the relationship between changes in the 

demographic structure and what we call the “natural rate of wealth inequality”.  This refers to the 

degree of wealth inequality that can be attributed purely to the fact that individuals of different ages 

are at different stages of their savings life-cycle. Although the application of this concept in an 

overlapping generations setting is novel, Atkinson (1971) provides an early discussion.  In our 

analysis we find that an increase in the fertility rate leads to slight increase in the degree of wealth 

inequality while a decrease in the mortality rate leads to a very substantial increase in wealth 

inequality.  As the key driving force behind the demographic change in the last decades has been the 

decline in mortality, we conclude that at least part of the recent dramatic increase in wealth 

inequality can be attributed to purely demographic phenomena; see Atkinson et al. (2011) for an 

overview. 

The remainder of the paper is structured as follows. Section 2 introduces the model and 
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Section 3 discusses its macroeconomic equilibrium properties.  Section 4 reports the numerical 

simulations, including some robustness analyses of the key results.  Section 5 concludes, and the 

Appendix contains the technical details, including providing the detailed proofs of the propositions. 

2. The Model 

We consider a closed economy that is populated by overlapping generations of individuals 

that differ only in their age. The individuals supply a fixed amount of labor during their life time and 

must decide how much to consume now and how much to save for later consumption.  The 

production sector comprises many individual firms that exert productive (investment) externalities 

on each other so that, in equilibrium, the aggregate economy sustains endogenous growth.   

Our strategy in describing the model is to focus on the balanced growth path.  We then justify 

this in our stability analysis of Section 3.2, where we establish that in fact there can be no stable 

transitional dynamics, so that indeed the balanced growth path is the only viable equilibrium. 

2.1 Individual behavior 

Demography: Individuals are born at time v  and the probability that they survive until age 

t v  is described by the survival function    M t v
S t v e

 
   where    

0

t v

M t v d  


    is the 

cumulative mortality rate and      ' /t v S t v S t v       is the hazard rate or instantaneous 

probability of death.    ' / 0S s dS s ds  , that is, the probability of survival decreases as the 

individual ages.  Naturally,  0 1S  , and   0S D  , where D  is the maximum attainable life time, 

which may be finite or infinite. 

Utility and budget constraint: The discounted expected life time utility of an individual 

born at time v  is given by:  

        
= ( , ) ,

v D t v M t v

v
E v U C v t e dt

    
   (2.1) 

where  ,C v t  is consumption at time t  of an individual born at time v ,   is the pure rate of time 

preferences and  M t v  is the cumulative mortality rate outlined above. The individual’s total 
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discount rate is given by the sum of the pure rate of time preferences and the instantaneous 

probability of death: ( )t v   , which varies with age.
7
 

Each individual supplies one unit of labor inelastically, and is assumed to make consumption 

and savings decisions such that he/she maximizes his/her discounted life time utility, (2.1), subject to 

the budget constraint: 

 
 

        
,

( , ) = , , , ,t

A v t
A v t r t v A v t w v t C v t

t



    


 (2.2) 

where  ,A v t  are financial assets and  ,w v t  is the wage rate, both at time t , of an individual born 

at time v  and r  is the interest rate, which is constant due to the production structure that we employ; 

see (2.18a).  Along the balanced growth path the wage rate of the individual grows at the growth rate 

of the economy. This allows us to express the wage at any age as      
,

t v
w v t w v e

 
 , where   is 

the equilibrium economic growth rate (see below). 

Individuals do not have a bequest motive, are not allowed to die indebted, and are born 

without assets. Hence, assets at birth are zero, i.e.  , 0A v v  , and individuals fully annuitize their 

assets. Annuities are life-insured financial products that pay out, conditional on the survival of the 

individual. That is, as long as they are alive, individuals receive a premium on the annuities that is 

equal to the instantaneous probability of death,  t v  .
8
  In return, when the individual dies, all 

remaining assets flow to the annuity firm. The overall rate received on annuities is, therefore, equal 

to  r t v  . 

Optimal consumption: In addition to the budget constraint (2.2), the agent must satisfy the 

transversality condition  , 0A v v D  . That is, in the absence of a bequest motive, individuals 

want to ensure that  , 0A v v D   and, in light of the mortality risk, the annuity firm wants to 

ensure that  , 0A v v D  . The only feasible solution in this regard is  , 0A v v D  . 

As a final component for the individual decision making process, we follow much of the 

                                                 
7
 The total discount rate increases if and only if  

2
'' 'SS S , which certainly holds if the mortality function is concave. 

8
 This result follows from perfect competition between annuity firms. If competition between annuity firms is less-than-

perfect there is a load factor, 0 < 1,  on the annuity premium and individuals receive only  t v   on their 

annuities. This is studied in Heijdra and Mierau (2012). 
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contemporary growth literature and assume an isoelastic utility function: 

  
1 1( , ) 1

( , )
1 1

C v t
U C v t





 



 (2.3) 

where   is the inter-temporal elasticity of substitution, which we shall assume lies in the range 

(0,1).
9
 

Performing the optimization problem outlined above allows us to write the individual 

consumption Euler equation as: 

  
( , )

= ,
( , )

C v t t
r

C v t
 

 
  (2.4) 

where we immediately see that consumption growth is constant over the life cycle and, more 

importantly, independent of the individual’s survival structure.  The latter is a direct consequence of 

the existence of perfect annuity markets and was first established by Yaari (1965). 

By considering a new born agent, we can express his/ her consumption at any age in terms of 

consumption at birth,  ,C v v , by solving (2.4) forward from time v : 

       
, , .

r t v
C v t C v v e

  
  (2.5) 

In order to solve for  ,C v v  we integrate the budget constraint (2.2) forward from time v , impose 

the transversality condition,  , 0A v v D  , and use (2.5) to obtain: 

 
( , )

( , )
( , )

H v v
C v v

v v



 (2.6) 

where: 

      
, ( )

v D r v M v

v
H v v w e d

 
 

    
   (2.7a) 

is the discounted value of future labor income (human wealth) of a new born and: 

                                                 
9
 See e.g. Guvenen (2006) who summarizes much of the literature, which with few exceptions places   well within the 

range (0,1). 
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        1
,

v D r v M v

v
v v e d

   


      
    (2.7b) 

is the inverse of his/her marginal propensity to consume out of total wealth.
10

  The expressions in 

(2.7) immediately reveal that an increase in the mortality rate leads to a decrease in human capital 

and an increase in the marginal propensity to consume.  Both of these effects can be traced back to 

the fact that a higher mortality rate implies heavier discounting of the future. 

2.2 Aggregate behavior 

Aggregate demography: At every instant, a cohort of size    ,P v v P v  is born, where 

 ,P v v  is the size of the cohort,  P v  is the size of the total population at time v , and   is the 

constant birth rate.  Given the survival function, the number of individuals of cohort v  still alive at 

time t  is equal to      
,

M t v
P v t P v e

 
 . At every instant  P t  individuals die, where   is the 

average mortality over all cohorts.
11

  Abstracting from migration, the growth rate of the population is 

equal to .n     

From the perspective of the generation born at time v , the population at time t  is equal to 

     n t v
P t P v e


 . Alternatively, we can define the total population at time t  as the sum of all the 

surviving cohort members:      
=

t M t v

t D
P t P v e dv

 

 .  Equating these two measures of  P t  

yields the demographic steady-state (see Lotka (1998, p. 60)): 

 
   1

= .
t n t v M t v

t D
e dv



   

  (2.8) 

That is, (2.8) is a constraint that binds the birth rate, mortality structure and the overall population 

growth rate in such a way that the population is stable.
12

 

The relative weight of each cohort is given by: 

                                                 
10

 Consumption at any other age is given by 
 

  ( , ) , ( , ) / ( , )C v t A v t H v t v t   .  The term corresponding to ( , )A v t  is 

absent from (2.6) because assets at birth are zero [i.e. ( , ) 0A v v  ]. 

11 Formally we can write the average mortality rate as:      , / .
t

t D
t v P v t P t dv 


   

12 Note that a stable population may still grow. A stationary population, in contrast, is one that is stable and does not 

grow (Lotka, 1998). This would be a population with 0n   in our case. 
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 

 
   ,

( )
n t v M t vP v t

e p t v
P t


   

    (2.9) 

the dynamics of which are: 

 
 

 

 

 
 = .

tp t v p t v t
n t v

p t v p t v


   
      

 (2.10) 

Equation (2.10) highlights that the decline in the relative cohort size reflects both its mortality and 

the overall population growth rate.  Being dependent on ( )t v , it depends only on age and is 

independent of calendar time. 

While the economic structure of the model depends heavily on the demographic structure, the 

reverse is not true. That is, neither mortality nor fertility is assumed to depend on the consumption or 

wealth of the individuals.  There is, however, an extensive literature dealing with how a simple 

demographic structure depends on the economic environment.  Manuelli and Seshadri (2009), for 

instance, use the Barro and Becker (1989) model to study how fertility and mortality are affected by 

the economic and institutional structure of an economy.
13

  Here we focus on an exogenous, but 

realistic, demographic structure and analyze how different types of demographic change affect the 

economy-wide growth rate (see section 4.2). 

Aggregate quantities: Employing the following generic aggregator function we can obtain 

the aggregate per capita equivalents of the individual quantities defined above: 

            , , ,
t t n t v M t v

t D t D
x t p t v X v t dv e X v t dv

   

 
     (2.11) 

where  x t  is the aggregate per capita value of  ,X v t . Taking the time derivative of (2.11) we can 

express the evolution of  x t  as: 

              ( ) = , , ,
t t

t
t D t D

x t X t t p t v X v t dv nx t t v p t v X v t dv 
 

        (2.12) 

where we have used the fact that  0p  ,   0p D  , as well as (2.10). 

                                                 
13 Without being exhaustive, other key references in this area include Doepke (2004), Soares (2005), and Cervelatti and 

Sunde (2005). 
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Aggregate consumption: Straightforward application of (2.11) implies that aggregate per 

capita consumption is given by:      ,
t

t D
c t p t v C v t dv


  .  Using (2.12) in combination with 

(2.4), we can write the dynamics of  c t as: 

               = , , ,
t

t D
c t r n c t C t t t v p t v C v t dv   


       (2.13) 

Using (2.4) once more allows us to express (2.13) more compactly: 

 
 

   
( , ) ( )

( , )

c t C v t t t

c t C v t c t

  
   (2.14) 

where: 

        ( ) , , ( )
t

t D
t t v p t v C v t dv C t t nc t 


       (2.15) 

is the generational turnover term.  It measures the reduction in aggregate per capita consumption due 

to the arrival of new agents without assets together with the departure of old agents with assets. This 

brings us to the first proposition: 

Proposition 1:  Along the balanced growth path, the generational turnover term is 

positive as long as the economic growth rate is less than the growth rate of 

consumption, i.e,  r    .  

Proof: See Appendix A. 

Aggregate assets: Using (2.11), we define aggregate per capita assets as: 

     ,
t

t D
a t p t v A v t dv


  .  Applying (2.12), and substituting (2.2) and (2.10) allows us to express 

the aggregate capital accumulation process as: 

        ( ) .a t r n a t w t c t     (2.16) 

The aggregate assets accumulation process in (2.16) differs from the individual asset accumulation 

process, (2.2), because (a) the premium received on annuities,    ,t v A v t  , is a transfer from 



11 

 

those who die to those who survive, and (b) the growing population is taken into account.  

2.3 Firms 

Individual firms: There are N  identical firms that each produce according to a Cobb-

Douglas production function:        
1

i i iY t Z t K t L t
 

 , where  iY t  is individual output,  iK t  

is individual capital,  iL t  is individual labor demand,  Z t  is the aggregate level of technology in 

the economy and   is the capital share of output. In per capita terms the production function can be 

expressed as:      i iy t Z t k t


 , where  iy t  and  ik t  are output and capital per capita, 

respectively. Assuming that both capital and labor are paid their marginal products, the equilibrium 

interest rate and wage rate are determined by: 

   1( ) ( ) ,ir t Z t k t     (2.17a) 

    (1 ) ( ) ,iw t Z t k t    (2.17b) 

where   is the depreciation rate. 

Aggregate production: The inter-firm productive externality is given by    
1

Z t Zk t


  so 

that the aggregate per-capita production function is of the AK-type (see, Romer, 1986) ( ) ( )y t Zk t , 

where Z  is the technology index. Taking account of the aggregate production externality, 

equilibrium factor prices are: 

 ,r Z    (2.18a) 

      1 .w t Zk t   (2.18b) 

validating our assumption of a constant return to capital and growing wage rate. 

3. Equilibrium 

We now derive the economy-wide equilibrium and describe its properties.  In equilibrium, 

both the labor and the capital market must clear. For the equilibrium to be viable it must satisfy the 

optimal decisions made by the households, as well as the transversality condition on individual asset 
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accumulation.  We assume that all individuals are employed, so that labor market clearance is 

implied by equating the total population with the total labor force.  Likewise, because productive 

capital is the only asset in the economy, capital market clearance is implied by setting aggregate 

assets equal to total capital    A t K t .  In per capita terms this becomes    a t k t , implying 

furthermore that    a t k t . 

3.1 Existence 

Using the capital market clearance condition in (2.16) permits us to write the aggregate per 

capita capital accumulation process as: 

          k t Zk t c t n k t     (3.1) 

so that (3.1) in combination with (2.14) describes the equilibrium dynamics of the model.  Along the 

equilibrium growth path the economy grows at a rate: 

  
 

 
 

 

 
1 .

k t c t
t r n Z

k t k t
        (3.2) 

We can rewrite (3.2) further by noting that   ( ) ( ) ( ) ( ) ( ) ( )c t k t c t w t w t k t  and using the factor 

price relation in (2.18b): 

    
 

 
1 1 .

c t
t r n Z

w t
 

 
     

  
 (3.3) 

It remains to determine the value of    /c t w t .  We know that along the equilibrium growth path 

wages grow at the common growth rate, hence, we can write aggregate per capita consumption as:  

 
 

 
 

 

 
   ,

.
t r t v

t D

c t C v v
p t v e dv

w t w v

    


   (3.4) 

Using (2.6), (2.7) and (2.9) in (3.4) allows us to write the growth rate of the economy implicitly as: 

    
 

  
  

 
 1 1 ,

1

n rr
r n Z f

nr

    
  

  

   
       

   

 (3.5) 
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where    

0

D xs M s
x e ds

 
   and the demographic steady state (2.8) has been used to eliminate  .

14
 

Inspection of (3.5) reveals that there exists an equilibrium for which r n    and this brings us to 

the second proposition: 

Proposition 2: The equilibrium for which r n    is inconsistent (and therefore 

infeasible) because it violates the transversality condition on the individual asset 

accumulation process. 

Proof: see Appendix A. 

A similar result, although derived somewhat differently, is obtained by Bruce and Turnovsky (2011). 

For what follows we make the assumption that individuals are relatively patient and that the 

economy is dynamically efficient (i.e. r n  ). This allows us to derive the following proposition: 

Proposition 3: There exists a consistent equilibrium growth rate *  for which 

 * r     holds. 

Proof: see Appendix A 

 Intuitively, if  * r     no individual would ever hold positive assets, which means that 

it is impossible to sustain the closed economy.  As a corollary, note that the result of Proposition 3 

implies that, in equilibrium, the generational turnover term is always positive (see Proposition 1).  

Proposition 3 is related to Corollary 5 of d’Albis and Augeraud-Véron (2009, p.468) in which the 

same result is established for an overlapping generations model populated with individuals that have 

a rectangular survival function (i.e. individuals live for certain until time D ).  d’Albis and 

Augeraud-Véron also find an infinite number of other growth rates. However, the underlying 

dynamic process assures that, asymptotically, only the real root (our * ) is relevant (see their 

discussion surrounding Equation (37), p. 470). Hence, our proposition extends their asymptotic 

                                                 
14 The properties of the ( )x  function are discussed in more detail in Appendix A.  In (3.5) we also use the fact that, 

along the equilibrium growth path, only age matters but not the time at which an individual was born.  To see this note 

that, for instance, ( , ) ( )C v v w v  in (2.6 depends only on v   but not  ; see also Prop. 1 in Mierau and Heijdra, (2012). 
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result to the case of a convex survival function. 

It is interesting to observe that the upper bound of the consistent equilibrium growth rate is 

equal to the growth rate that would prevail in the representative agent model. This implies that the 

generational turnover inherent in overlapping generations models causes a negative pull on the 

economic growth rate.  We capture this result in the final proposition: 

Proposition 4: The equilibrium growth rate in the overlapping generations model is 

less than the equilibrium growth rate in the representative agent model. 

Proof: see Appendix A 

3.2 Stability 

In general, the description of the dynamics of an overlapping generations model having a 

realistic demographic structure is very complex.  Indeed, in Mierau and Turnovsky (2011) we find 

that to describe the global dynamics of an overlapping generations model with a neo-classical 

production structure leads to a 5 dimensional dynamic system consisting of mixed differential-

difference equations. In the single-sector endogenous growth setting, d’Albis and Augeraud-Véron 

(2009) have used a rectangular survival function that allows them to describe the global dynamics as 

being saddle-point stable by using transcendental functions.  However, this procedure becomes 

intractable for an arbitrary convex survival function. Hence, we adopt a different approach, and 

apply the second mean value theorem to approximate the generational turnover term. This allows us 

to summarize the model as a three dimensional dynamic system, the local dynamics of which we can 

characterize using standard techniques. Here we briefly outline the approach, relegating details to 

Appendix B. 

In general, the macrodynamic equilibrium is described by the pair of equations: 

          k t Zk t c t n k t     (3.7a) 

     ( ) ( ),c t r c t t     (3.7b) 
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where (3.7b) is obtained by substituting (2.4) into (2.14), and (3.7a) simply repeats (3.1) for 

convenience.  Recalling (2.15), the generational turnover term is defined as: 

        ( ) , , ( ).
t

t D
t t v p t v C v t dv C t t nc t 


       (3.8) 

To simplify this term, and thereby its underlying dynamics, we apply the second mean value 

theorem to the first term on the right hand side of (3.8) enabling us to express ( )t  as:  

        1 1( ) , , ( ) ( , ),
t

t D
t t v p t v C v t dv C t t nc t v t D t 


         (3.9) 

Writing    
     

   
1

,

,

t

t D

t

t D

t v p t v C v t dv
t v

p t v C v t dv


 



 
 





        

(3.10) 

we see that 1( )t v   is the ratio of the consumption given up by the dying to aggregate consumption 

and can be interpreted as being the average mortality of consumers over the period ( , )t D t .  

Henceforth, we denote this by 1( )C t v   to distinguish it from other measures of average   as 

computed from (B.9a) and (B.9b) in the Appendix.  Using 1( )C t   enables us to write (3.8) as: 

  1( ) ( ( ) ) ( ) , .Ct t n c t C t t        (3.11) 

In order to describe the dynamics of      , , / ,C t t H t t t t   we take the time derivatives of (2.7a) 

and (2.7b), and apply the mean value theorem again to yield: 

  1 1( , ) ( ) ( ) ( , ) ( , )HH t t w t r t H t t t t D          (3.12a) 

  2 2( , ) 1 (1 ) ( ) ( , ) ( , )t t r t t t t t D                (3.12b) 

where H  and   are defined analogously to C  and are expressed explicitly in Appendix B. 

By defining the stationary variables ( ) ( ) / ( )x t c t k t  and ( ) ( , ) / ( )y t H t t k t  we can write 

the equilibrium dynamic system in (3.7) as: 

  
( ) ( )

( ) ( ) ( ) ( )
( ) ( , ) ( )

C

x t y t
r n Z n x t

x t t t x t


           


 (3.13a) 



16 

 

 
( ) 1

(1 ) ( ) ( )
( ) ( )

H

y t
Z r Z n x t

y t y t
            (3.13b) 

  ( , ) 1 (1 ) ( , ).t t r t t           (3.13c) 

In expressing the dynamics as in (3.13) it is important to note that while the   terms are functions of 

time [see e.g. (3.10)], as we show in the Appendix, given the stationarity of the demographic 

structure and the assumption of the demographic steady state they in fact vary only slightly over time 

and for practical purposes can be treated as constants. Moreover, being estimates of mortality rates, 

the   terms are uniformly small and their equilibrium values can be determined as described in 

Appendix C.
 
 

Linearizing (3.13) around the steady-state, the local dynamics can be expressed as: 

 

2

(1 ) 0 ,

1
0 0

y
x y

xx x x
Z

y y y y
y

  



 
  
       

    
      

         
 
 
  

 (3.14) 

where tildes indicate the steady-state values of dynamic variables and we have dropped the time 

indices to avoid cluttering the notation.  To establish the stability characteristics of the system (3.14) 

we must analyze its three eigenvalues, 1 2 3, ,   .  From (3.14) we see that these eigenvalues are all 

positive, and the system therefore locally unstable, if and only if 

 1

1
0  


 (3.15a) 

 2 3 (1 ) 0
Z y

x
y x


       


 (3.15b) 

 
2 3 (1 ) 0

Z y
x y

y x

 
  

 
     

  
 (3.15c) 

By definition, 0   and it is straightforward to show that for a feasible equilibrium growth rate (i.e. 
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 * r    ), (3.15b) holds as well.
15

  The sign of (3.15c) cannot be definitively determined 

analytically.  However, numerical simulations for a very general survival function and a wide variety 

of underlying parameter values reveal that for any plausible parameter set it too is positive.  In this 

case, all three eigenvalues are positive, indicating that the equilibrium dynamics (3.13) are locally 

unstable and that, therefore, the only viable equilibrium is for the system always to be on its 

balanced growth path, as in Romer’s (1986) original representative agent version of the model.
16

 

Our result contrasts somewhat with the related work of d’Albis and Augeraud-Véron (2009), 

who find the growth rate of capital to have a transitional path characterized by a saddle-point 

property.  There are key differences in the underlying assumptions that account for the disparity.  In 

addition to assuming a rectangular survival function, d’Albis and Augeraud-Véron assume that the 

economy starts from a fixed point in time, with the given initial distribution of wealth at that instant 

being the source of the dynamics of the capital growth rate.  In contrast, like Blanchard (1985), the 

starting point of our economy is in the infinite past and is therefore irrelevant insofar as the 

equilibrium growth rate is concerned.  Moreover, with the arbitrary convex survival function, we are 

constrained to analyzing the local dynamics around the relevant equilibrium balanced growth path.  

Like the standard Romer (1986) model and the Blanchard extension, we find that this equilibrium 

growth path, being disconnected from any given initial point, is locally unstable. 

4. Numerical Simulations 

Having established the formal properties of the model insofar as possible, to obtain further 

insights we resort to numerical simulations. In the first exercise, we study how the demographic 

structure of the model affects the economic growth rate.  The second simulation investigates how a 

changing demographic structure influences the natural rate of wealth inequality. But before reporting 

the simulations, we outline how the model is parameterized and illustrate some of its basic 

properties. 

                                                 
15

 In this case since 1 2 30, 0     , we know that at least two of the roots are positive. 
16

 In the case of the Blanchard model it is straightforward to establish that all three eigenvalues are positive. 
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4.1 Model parameterization 

To parameterize the model we require an explicit survival function.  To this end, we employ 

the very general function proposed by Boucekkine et al. (2002): 

    
 1

0
0 1

0

= , (for 0 ), > 1,  > 0,
1

t v

M t v e
S t v e t v D




 




  
    


 (4.1) 

where the maximum attainable age, determined by   0S t v  , is 0 1= ln /D   .  In keeping with 

the terminology of Boucekkine et al. we refer to 0  as “youth mortality” and 1  as “old age 

mortality”. We estimate the two parameters by nonlinear least squares, using US cohort data for 

2006.
17

  Our estimated results in Table 1 highlight that we obtain a tight fit with highly significant 

parameter estimates.  The resulting survival function is illustrated in Figure 1.  As we do not 

consider childhood or education, we normalize the function so that birth corresponds to age 18.  

Figure 1 confirms that the survival function tracks the actual survival data very well from 18 until 

90.  Beyond that, the concavity of the function yields a less satisfactory fit.  However, only 1.5% of 

the US population is older than 85 and almost all these individuals are retired and generally inactive 

in the economy.  In order to satisfy the demographic steady-state, (2.8), we set the birth rate such 

that the population growth rate equals 1%, as is also observed empirically. This leads to a birth rate 

of 2.24%, which is somewhat higher than the 1.4% that is observed empirically.  However, because 

we neglect migration, the model’s birth rate should be interpreted as including a component 

reflecting migration. 

The remaining structural parameters are standard and are set as follows. The elasticity of 

capital is 0.35   and the depreciation rate is 0.05  . Furthermore, the aggregate level of 

technology equals 0.3286Z  , which yields a real interest rate of 6.7% . With respect to 

preferences, we set the intertemporal elasticity of substitution to 0.75, consistent with the upper end 

of the estimates reported by Guvenen (2006). We take 0.035   to be the rate of time preference at 

birth, which due to the increasing mortality with age implies a discount rate of 0.0388 for the 

                                                 
17

 Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic 

Research, Rostock (Germany). Available at www.mortality.org or www.humanmortality.de. 

http://www.mortality.org/
http://www.humanmortality.de/
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individual of average age.
18

 

Equilibrium growth: In Figure 2 we illustrate the equilibrium growth rate by plotting both 

the left-hand and right-hand sides of equation (3.5). Point A is the actual equilibrium growth rate and 

point B is the inconsistent equilibrium discussed in Proposition 2.  For comparison we have also 

added point RA, which is the growth rate that would prevail in the representative agent model. In 

that case the growth rate is equal to the growth rate of individual consumption, i.e.  r    . As 

the graph shows, the generational structure induces a negative pull on the growth rate of the 

economy. This finding is consistent with Proposition 4, which states that the growth rate of the 

overlapping generations model is smaller than the growth rate of the representative agent model. 

Row 1 of Table 2 indicates that the value of the equilibrium growth rate for the current 

parametrization equals 1.03 percent.
19

 

Stability: The parameterization of the model allows us to calculate the values of the 

eigenvalues determined in (3.15).  Carrying out these calculations, we find 1 20.0478, 0.0415,    

3 0.2680  , so that all eigenvalues are indeed all positive.  Hence, any transitional path is locally  

unstable, so that to remain viable the economy must always be on its balanced growth path, just like 

the representative agent model of Romer (1986). 

 As an aside, the parametrization also permits us to charaterize the magnitude of the   terms 

in relation to the stationary variables x , y  and  .  The stationary variables are, respectively, equal 

to 0.2640, 3.6142 and 20.9.
20

 The implied values of C , H  and   are, respectively, 0.0184, 

0.0034 and 0.0048, confirming our comment that the   terms are negligible when compared to the 

stationary variables. 

4.2 Growth and the source of demographic change 

The general form of the mortality function we have developed allows us to characterize the 

relationship between the demographic structure and the economic structure.  As we have seen from 

the various propositions, we know that introducing a realistic demographic structure in an otherwise 

                                                 
18

 In Section 4.3 we establish the robustness of our results to the various parameter assumptions that we make. 
19

 This is significantly less than the equilibrium growth rate of 2.4% in the representative agent economy. 
20

 These are calculated from (B.14a)-(B.14c) in the Appendix. 
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unchanged endogenous growth model leads to a significantly lower economic growth rate than in the 

representative agent model.  In this section we pursue this issue further, by analyzing how the 

economic growth rate of the economy responds to changes in the demographic structure. 

We begin by posing the question: How does the economic growth rate respond to a 0.5 

percentage point increase in the population growth?  Our demographic structure provides two 

channels through which such a change may occur, namely, either an increase in the fertility rate or a 

decrease in the mortality rate.
21

  In the simulation results presented in Rows 3 and 4 of Table 2, we 

find that these two different sources of demographic change have dramatically different impacts on 

the economic growth rate.
22

 While a 0.5 percentage point increase in the population growth rate 

induced by a change in the fertility rate leads to 0.06 percentage point decrease in the economic 

growth rate, the same change induced by a decrease in the mortality rate leads to a 0.4 percentage 

point increase in the economic growth rate.
23

 

The driving force behind the two contrasting results is the fact that a decrease in mortality 

acts as an incentive to save, because individuals can benefit longer from their savings, while an 

increase in the fertility rate depletes the per capita capital stock and, thereby, aggregate savings.  As 

savings are the source of economic development, an increase or decrease in the incentive to save 

directly translates into changes in the economic growth rate.   

As noted in the introduction, the stark difference relates to the observation made by Kelly 

and Schmidt (1995), and their contrast between the young and the old as being “resource users” and 

“resource creators”, respectively.  As we also noted, the fact that a decline in mortality increases 

savings and growth agrees with both the theoretical and empirical findings of Bloom et al. (2007) 

and Lorentzen et al. (2008), who show that countries that have experienced a decline in mortality 

have simultaneously experienced an increase in savings, and correspondingly, growth.  It also is 

                                                 
21

 The demographic changes running through mortality can either be driven by a change in old age or youth mortality. 

However, because the two changes give almost the same effect, we focus on the former in our analysis. The numerical 

results for youth mortality are available on request.  
22

 From columns 4 to 6 in Table 2 we observe that model is stable also in the new regimes. 
23 It is interesting to note that the results concerning the relationship between mortality and economic growth also surface 

in much more elaborate models. Krueger and Ludwig (2007), for instance, find a similar result in a model containing 

endogenous labor supply and an elaborate pension system. In that model, however, it is not possible to provide the same 

analysis as Section 3 above.  
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consistent with the cross-sectional analysis of the driving forces behind economic development, by 

Sala-i-Martin et al. (2004).  Using a sample of 88 countries they find that economic growth is 

positively related to life expectancy, but negatively related to fertility. 

The contrasting effects of fertility and mortality driven changes in the population growth rate 

on the economic growth rate may thus account for the mixed empirical evidence concerning the 

relationship between the population growth rate and the economic growth.  That is, while Kelly and 

Schmidt (1995) find a negligible relation for the 1960s and 1970s, they obtain a negative relation for 

the 1980s.  Likewise, Sala-i-Martin et al. (2004) find that the sign of the impact of the population 

growth rate on economic growth is ambiguous.  These differences and easily be explained in terms 

of the changing demographic structure over time. 

Keeping these ambiguous results in mind, we turn to the second question:  Is the relationship 

between a change in the population growth rate and the economic growth rate monotonic? This 

question is closely related to the analysis of Boucekkine et al. (2002) who show that the relationship 

between the population growth rate and the economic growth rate is hump-shaped, regardless of the 

source of demographic change.  They then go on to argue that this hump-shaped relationship can 

account for the ambiguous empirical evidence on the relation between the population growth rate 

and the economic growth. 

In Figure 3 we illustrate the relationship between the population growth rate and the 

economic growth rate.  In the left panel we depict the relationship when the source of demographic 

change is due to a change in the fertility rate, while in the right panel we demonstrate the 

relationship when mortality is the source of demographic change.  Both panels indicate that the 

relationship between the population growth rate and the economic growth rate is monotonic, 

regardless of the source of demographic change.  That is, while the left panel indicates a monotonic 

negative relation between the population growth rate and the economic growth rate when the source 

of the change is fertility, the right panel indicates that the relationship is monotonically positive if 

the source of the change is a change in mortality. 

The difference between our results and those of Boucekkine et al. (2002) suggests that the 

existence of a hump-shaped relationship between the population growth rate and the economic 
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growth rate crucially depends on the source of endogenous growth. Whereas in the Boucekkine et al. 

(2002) model growth arises from the accumulation of vintage-dependent human capital, in our 

analysis growth arises from inter-firm investment externalities. However, by focusing on different 

combinations of changes in fertility and mortality in determining the population growth rate we can 

equally well account for the ambiguous empirical relationship. That is, a change in the population 

growth rate driven by an increase in fertility can account for a negative relationship, a change driven 

by a decrease in mortality can account for a positive relationship and any change driven by a 

combination of changes in mortality and fertility can account for all the intermediate results.
24

 

4.3 Demographic structure and wealth distribution 

The observed increase in wealth inequality has recently attracted a lot of attention both in the 

United States and elsewhere.
25

  In an early contribution, Atkinson (1971) argues that there is an 

inherent wealth inequality in societies due to the changing savings behavior of agents over their life-

cycle.  In general, macrodynamic models based on identical representative agents cannot account for 

this source of wealth inequality.  The overlapping generations structure of our model, however, 

enables us to trace out the development of assets over the individual life-cycle.  As can be seen in 

Figure 4, the asset path is hump-shaped over the life-cycle, in the sense that individuals start out with 

zero assets, then build up assets for intertemporal consumption smoothing and, toward the end of 

their lives, deplete their assets so as to assure that assets are zero exactly at the maximum attainable 

life-time, D .  Additionally, in Figure 5 we trace out the share of each cohort at different ages of that 

cohort. As can be seen, the cohort structure in 2006 was such that a substantial part of the population 

was made up by individuals between 40 and 50. 

The fact that individuals at different stages of their life-cycle possess different levels of 

wealth and that we know the size of the cohorts to which individuals belong, enables us to calculate 

standard wealth inequality measures, such as the Gini coefficient.  Using this metric, we turn to the 

                                                 
24

 Bruce and Turnovsky (2011) also examine the relationship between population growth and economic growth and 

obtain monotonic relationships.  In their case, where the increased population growth rate is due to lower mortality the 

sign depends upon the assumptions one makes about the ratio of working time to retirement.  While the model is also 

based on the Romer technology, as noted previously it assumes a different survival function.   
25

 For an overview see Atkinson et al. (2011) and the references therein. 
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final question of our analysis: How does wealth inequality change in the wake of a demographic 

change?  Although a large literature exists trying to replicate the observed wealth inequality (for an 

overview see Cagetti and De Nardi (2008)), relating changes in inequality to the change of the 

demographic structure is, to the best of our knowledge, new.  

Before analyzing the changes in inequality we establish the benchmark inequality in column 

9 of Table 2.  For our parameterized model we find the Gini coefficient of wealth inequality to be 

0.37.  At this point we wish to stress that our aim is not to replicate the Gini coefficient of the United 

States (which is actually 0.80) but rather to analyze how it changes with the demographic structure.  

Hence, it is the direction of the change that is important rather than its absolute value.  Furthermore, 

our Gini coefficient indicates the degree of inequality inherent in an economy purely due its age 

composition and abstracting from any within-cohort inequality.  In this sense, it is the “natural rate 

of wealth inequality”.
26

 

Rows 3 and 4 of Table 2 report the value of the Gini coefficient resulting from 0.5 percentage 

point increases in the population growth rate driven by fertility and mortality, respectively. As can 

be seen, a fertility driven change in the population growth rate increases the Gini coefficient only 

marginally to 0.38, while if it is mortality driven the Gini coefficient increases dramatically to 0.46. 

The substantial difference in the increase in inequality following a demographic change can 

be traced back to the life-cycle pattern of savings. An increase in the birth rate increases the number 

of young individuals but leaves the life-cycle savings pattern of the individuals unchanged. Hence, 

by increasing the birth rate, inequality increases only due to the presence of relatively more young 

individuals who have much fewer assets than do older agents.  In contrast, a decrease in the 

mortality rate changes both the relative distribution of cohort sizes and the life-cycle savings pattern. 

Due to the longer life-span, individuals will save more for life-cycle purposes, so that the dispersion 

between asset holdings at different moments of the life-cycle increases substantially.  In addition, 

more agents are alive who are at the top of their life-cycle savings. The combination of these two 

factors lead to the large observed increase in wealth inequality after a drop in the mortality rate.  

                                                 
26

 The natural rate of wealth inequality is related to the discussion of fair versus unfair inequality (See, for instance, 

Almås et al. (2011) and Devooght (2007)). In contrast to them, however, we do not employ a normative framework but 

simply notice that a part of the observed (wealth) inequality is due to the age distribution of society. 
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Since a dominant element of the demographic change that has occurred in the United States over the 

last half century has been the decline in the adult mortality rate, we conclude that at least part of the 

observed increase in wealth inequality simply reflects the change in the age profile of the US p 

opulation. 

4.4 Robustness analysis 

In addition to the demographic structure, other key parameters include: the productive 

elasticity of capital ,  the depreciation rate ,  the aggregate level of technology ,Z  the 

intertemporal substitution elasticity   and the rate of time preferences .  The main numerical 

outcomes of the paper are: (i) the instability of the transitional dynamics, and the implication that the 

balanced growth path is the only viable equilibrium, (ii) the stark contrasts between the economic 

consequences of a birth rate-driven and a mortality-driven change in the population growth rate, (iii) 

the monotonic relationship between a change in the population growth rate and the economic growth 

rate, and (iv) the impact of changes in the demographic structure on the natural rate of wealth 

inequality.  These are strong results, and it is therefore important to establish their robustness with 

respect to alternative assumptions concerning the demographic structure and the economic 

parameters of the model.
 27

   

Alternative demography:  As an alternative to our base assumption that the demographic 

structure corresponds to the US cohort data for 2006, we use data for the US cohort that was alive in 

1980. For that cohort 0 55.1317,   1 0.0544,   2.32%   and, therefore, 0.96%n  . We 

replicate the simulation results from Table 2 and Figure 3 in order to assure comparability of the 

robustness checks with the analysis in the main text.  In all cases we find that our previous results 

remain unchanged.  That is, the only viable equilibrium is the balanced growth path, the 

consequences of demographic change remain precisely as before, and the relationship between the 

demographic structure and the natural rate of wealth inequality is unchanged.  Furthermore, we find 

that the Gini coefficient in the base equilibrium in 1980 is 0.3549, which is lower than in the 

                                                 
27

 Because of space limitations we do not report the detailed numerical results, all of which are available on request. 
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baseline model based on 2006 (Gini 0.3650).  This lends additional support to our claim that part of 

the change in wealth inequality can be attributed to changes in the demographic structure. 

Economic parameters:  Although 0.35   is generally the consensus value for the 

productive elasticity of capital in developed countries, a larger value may be more appropriate for 

less developed countries (Caselli and Feyrer, 2007). Hence, as a second robustness check we use 

0.45   and repeat all the simulations.  Furthermore, we have: (i) increased the depreciation rate 

from 0.05   to 0.075  , (ii) reduced the interest rate from 6.7% to 5.5%; (iii) reduced the 

intertemporal elasticity of substitution from 0.75 to 0.5, and (iv) increased the raw rate of time 

preference from 0.035 to 0.045.  We have also considered intermediate values.  In all cases we find 

that the qualitative results of our base numerical simulations continue to hold.   

Most importantly, extensive robustness analysis over all the parameters indicates that the 

three eigenvalues are always positive, so that the economy always jumps to its balanced growth path 

equilibrium.  Equally importantly, the qualitative relationships between growth and the source of 

population growth illustrated in Fig. 3 remain virtually unchanged.  In short, there is no doubt that 

our findings are robust across a wide range of variations in parameters. 

5. Conclusion 
 

In this paper we have extended the Romer (1986) endogenous growth model to allow for a 

general demographic structure. In the theoretical part of the paper we have shown that, inter alia, the 

demographic structure inflicts a negative drag on aggregate consumption and that the growth rate 

that prevails in the demographic model is lower than the growth rate that prevails in the 

representative agent model. Furthermore, using a novel approach to linearize the model around the 

balanced growth path, we have established that the model is locally unstable and that, therefore, the 

economy is permanently on its equilibrium path. 

In the first numerical analysis, we have established that the consequences of a change in the 

population growth rate for the economic growth rate differ substantially depending on the source of 

the demographic change. That is, while an increase in the population growth rate driven by an 

increase in the fertility rate has a negative impact on economic growth, a change driven by a drop in 
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the mortality rate has a positive impact. We use this difference to reconcile the ambiguous empirical 

evidence on the relationship between the population growth rate and the economic growth rate. 

In the second numerical analysis, we have studied the relationship between a changing 

demographic structure and the “natural rate of wealth inequality”. In this regard we have found that 

an increase in the fertility rate leads to a slight increase in inequality while a decrease in the 

mortality rate leads to a substantial increase in inequality. The results imply that at least part of the 

dramatic increase in wealth inequality of the last decades can attributed to demographic factors. 

While our model is stylized, it can be extended in various directions.  One obvious extension 

is to allow for labor supply on both the intensive and extensive margins, to study how the changing 

demographic environment affects life-cycle decisions concerning retirement decisions. Second, 

using the approach we have employed for linearizing the model it would be interesting to consider 

the (local) stability properties of an economy having a neoclassical production structure and yielding 

transitional dynamics.  Finally, by introducing heterogeneity between agents of the same age, the 

analysis could be extended to shed light on intra-cohort inequality in conjunction with life-cycle 

behavior.
28

 

  

                                                 
28 A natural framework within which to integrate intra-cohort and inter-cohort heterogeneity is the canonical model 

developed by García-Peñalosa and Turnovsky (2006), which analyzes the growth-income inequality tradeoff in the 

context of the Romer production technology, but abstracts from the demographic aspects emphasized here. 
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Table 1 

Estimated Survival Function 

   
1

0

0

=
1

u

M u e
S u e







 
 


 where*  

US Cohort 2006 

0  

(st. dev.) 

78.3618 

(6.0193) 

1  

(st. dev.) 

0.0566 

(0.0011) 

Adj. R
2 

0.9961 

*  is an indicator function that is 1 for  and 0 otherwise. 

 

Table 2 

Numerical Simulations 

  Demography Economic Variables 

  
18L  n    

1  2  3  Gini  

Baseline Model  78.38 1.00% 1.03% 0.0478 0.0415 0.2680 0.3650 

Demographic Shocks         

  Increase in fertility rate 2.57%   
78.38 1.50% 0.97% 0.0478 0.0390 0.2642 0.3830 

  Decrease in old age 

mortality 
1 0.0443   95.15 1.50% 1.42% 0.0458 0.0351 0.2591 0.4576 

Note that because of the ongoing economic growth we cannot define the capital stock, wage, consumption etc. in the steady-

state. 

  

2. . .(0, )i i d 

( )I u D u D
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Figure 1 

Demography 

 
Figure 2 

Equilibrium 
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Figure 3 

Demographic change and economic growth 
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Figure 4 

Individual asset profile 

 

Figure 5 

Relative cohort shares 
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Appendix 

A:  Proofs of Propositions 

Proposition 1:  Along the balanced growth path the generational turnover term is 

positive as long as the economic growth rate is smaller than the growth rate of 

consumption, i.e.  r    . 

 Proof: We begin by noting that the generational turnover term (2.15) can be rewritten as: 

            ' , ,
t n t v

t D
t S t v e C v t dv C t t nc t 

 


       (P1.1) 

where we have used the fact that      ' /t v S t v S t v       and (2.9).  Integrating (P1.1) by 

parts and simplifying yields:  

                 , , , ,
t tn t v M t v n t v M t v

v v
t D t D

t e nC v t C v t dv nc t e C v t dv 
       

 
           (P1.2) 

where  ,vC v t  is the change in consumption across cohorts at a given point in time. At any moment 

in time we can write the rate of change of individual consumption as:
29

 

      , , , .v tC v t C v t C v t   (P1.3) 

Using (2.4) and noticing that, along the balanced growth path, consumption has to grow at the 

common growth rate (i.e.    , / ,C v t C v t  ) we can write (P1.3) as: 

       , , .vC v t r C v t      (P1.4) 

Using (P1.4) we can rewrite (P1.2) as: 

                , ,
t n t v M t v

t D
t e r C v t dv r c t      

   


          (P1.5) 

which immediately reveals that as long as  r       0.t    This completes the proof. 

                                                 

29
 The rate of change of consumption of t v  year old agents over time is 

   
0

, ,
lim v t
h

C v h t h C v t
C C

h

  
   
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Proposition 2: The equilibrium for which r n    is inconsistent (and therefore 

infeasible) because it violates the transversality condition on the individual asset 

accumulation process. 

 Proof: We can write aggregate consumption as: 

               , [ , ( , )]
t t

t
t D t D

c t p t v C v t dv p t v r t v A v t w t A v t dv
 

           

       ( ) [ , ( , )]
t

t
t D

w t p t v r t v A v t A v t dv


       (P2.1) 

If r n    then (3.3) implies that    c t w t , this allows us to write (P2.1) as: 

         
[ , ( , )] 0.

t n t v M t v

t
t D

r t v A v t A v t e dv
   


     (P2.2) 

Integrating an individual agent’s budget constraint over his lifetime, recognizing that his initial 

financial wealth is zero, and recalling the transversality condition, yields the his intertemporal 

budget constraint:  

      ( )
, 0.

v D r v M v

v
w C v e d

 
  

    
     (P2.3) 

Substituting the budget constraint from (2.2) into (P2.3) gives: 

       ( )
, ( , ) 0.

v D r v M v

t
v

r t v A v t A v t e d
 

 
           (P2.4) 

Clearly, (P2.2) and (P2.4) can only hold simultaneously if r n  (and 0  ). As both r  and n  are 

set exogenously, there is no reason for this to be the case. This completes the proof 

Proposition 3: There exists a consistent equilibrium growth rate *  for which 

 * r     holds. 

 Proof: We proceed in two steps.  We first establish the existence of an equilibrium, and in 

the second step we show that one of its characteristics is that it is smaller than  r  . 

 For the first step we begin by noting that (3.5) can be rewritten as: 
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   ( ) 1 ( ) ( )
(1 )

n r
r n

Z


     



 
     


 (P3.1) 

where: 

     ( ) 1 ( ) ( ) ( ) .r n r n r                    (P3.2) 

and 
 

0
( )

D xs M s
x e ds

 
  .  As ( )  is an increasing, linear, function of   we know that for there to 

exist at least one fixed point ( )  needs to be concave. Straightforward inspection of (P3.1) and 

(P3.2) reveals that r n    is an equilibrium but from Proposition 3 we recall that it is inconsistent. 

The aim is thus to establish that ( )  is concave and that r n    is not the unique point of 

intersection. 

In order to establish the properties of the ( )  function we first study the properties of the 

sub-function ( )x .  Specifically, we see 

 

   2

0 0

2 2

2

.) '( ) 0 .) "( ) 0

'( ) ''( ) ( ) '( )
.) ''( ) 0 .) 0

( ) ( )

D Dxs M s xs M s
a x se ds b x s e ds

x x x x
c x d

x x

 

   


 

   
    


  

 
 (P3.3) 

where properties a.) and b.) follow from straightforward differentiation, while property c.) is a 

consequence of the Cauchy-Schwarz inequality. To see this, write the inequality in the form: 

 
2

2 2

0 0 0
( ) ( ) ( ) ( )

D D D

f s ds g s ds f s g s ds 
       

and define the characteristic functions as 
1/2[ ( )]( ) xs M sf s se  and 

1/2[ ( )]( ) xs M sg s e  . Property d.) 

follows immediately from c.).  

 Using these properties of the ( )x  function we can determine the properties of ( )  

1.) For r n   , ( ) 0   while, similarly we can establish that: 

      ( ) 1 ( ) 1 ( ) 0r n r n r n                 (P3.4) 

Hence, the equilibrium condition in (P3.1) is satisfied. However, as shown in Proposition 2 

r n    violates the transversality condition and can, therefore, be ignored. 
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2.) For  r     we can establish that:  

          ( ) 1 ( ) 1 0r r n r n                   (P3.5) 

However, ( ) 0   so that  r     does not constitute an equilibrium. 

 To proceed further, we study the curvature of the ( )  function. Its first derivative is: 

    ( ) ( ) ( ) ( ) ( )r n r r n r                          (P3.6) 

Evaluating this at the roots of the ( )  function identified in (P3.4) and (P3.5) yields: 

    ( ) ( ) (1 ) ) ( ) (1 )r n n r n r                  (P3.7) 

    ( ( )) ( ) (1 ) ( ) (1 ) )r n r n r                    (P3.8) 

and it follows that ( )  switches sign between its two roots (i.e. 

   sgn ( ) sgnr r n              ). To determine  sgn r n     note that from property d.) of 

(P3.3) we know that        ' ' / ' ' /x x x x     where 'x x  and hence:
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 

 

(1 ) ( )

(1 ) ) ( )

r n

r n

   

   

   


 
 (P3.9) 

which implies  ( ) 0r     and   0r n   . 

 The second derivative of    is given by: 

 
( ) ( ) [ ( ) ] 2 ( ) [ ( ) ]

( ) [ ( ) ]

r n r r n r

r n r

            

     

              

    
 (P3.10) 

Using property c.) of (P3.3) we can establish: 
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
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30

 To see this take the derivative of    ' /x x   and apply property d.). 
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and, therefore: 

 
   

21
( ) ( ) ( ) ( ) ' ( ) 0

( ) ( )
r n r r n r

r n r
            

     
                  

which can be expressed more compactly as:  

 
 

2( )
( ) 0.

( ) ( )r n r




     


   

   
 (P3.11) 

and implies that    is concave. Thus, there exists an equilibrium growth rate: 

 * *( ) ( )    . (P3.12) 

This completes the first part of the proof. 

 To establish the second part of the proposition (that  * r    ) we simply note that 

   0r     while    0r    . This completes the proof. 

 In order to clarify the above arguments, we graph the    and    functions in Fig. A.1.  

Figure A.1 
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Proposition 4: The growth rate that prevails in the overlapping generations model is 

less than the growth rate that prevails in the representative agent model. 

 Proof: Observe that the growth rate in the representative agent model equals the growth rate 

of individual consumption. Using (2.4) we establish that the growth rate in the representative agent 

case is: 

   ,RA r     (P4.1) 

where RA designates Representative Agent. From Proposition 3 we know that for the consistent 

growth rate it holds that  * r    , hence, * RA  . This completes the proof. 

B: Stability 

 The dynamics of the macroeconomic equilibrium can be summarized in the following form: 

 ( ) ( ) ( ) ( ) ( )k t Zk t c t n k t     (B.1a) 

 ( ) ( ) ( ) ( )c t r c t t     (B.1b) 

where r Z    and ( ) (1 ) ( )w t Zk t   and:  

        ( ) , , ( ).
t

t D
t t v p t v C v t dv C t t nc t 


       (B.2) 

Using the second mean value theorem,
31

 we may write (B.2) as:  

        1 1( ) , , ( ) ( , ),
t

C
t D

t t v p t v C v t dv C t t nc t v t D t 


         (B.3) 

where: 

  
     

   
1

,

,

t

t D
C t

t D

t v p t v C v t dv
t v

p t v C v t dv


 



 
 





  

 (B.4) 

is the ratio of the consumption given up by the dying to aggregate per-capita consumption. 
 
We show 

                                                 
31

 For any real valued function ( )f x  on the interval [ , ]a b  and function ( )g x  that is integrable and does not change sign 

over the interval ( , )a b  there exists a value ( , )c a b  such that        
b b

a a
f x g x dx f c g x dx  . 
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below that  1C t v   varies only very slightly over time, enabling us to treat it as essentially 

constant.  Equally importantly, being a weighted average of mortality rates across cohorts, C  is 

small.  Recalling the definition of ( )c t , we can express (B.3) in the more compact form:  

  ( ) ( ) ( ) , .Ct n c t C t t      (B.5) 

In order to describe the dynamics of ( , )C t t  we can use the fact that from (2.6) we know that: 

 
( , )

( , )
( , )

H t t
C t t

t t



 (B.6) 

where we take from (2.7) that: 

      
( ) , ( )

t D r t M t

t
H t H t t w e d

 
 

    
    (B.7a) 

and: 

          1
( ) , ,

t D r t t M t

t
t t t e d

    


      
      (B.7b) 

are, respectively, human wealth and the marginal propensity to consume at birth. The dynamics of 

(B.7a) and (B.7b) are given by: 

  1 1( ) ( ) ( ) ( ) ( , )HH t w t r t H t t t D          (B.8a) 

and: 

  2 2( ) 1 (1 ) ( ) ( ) ( , )t r t t t t D                (B.8b) 

where H  and   are defined analogously to C :  

   
     

   
1

( )

( )

t D r t M t

t
H t D r t M t

t

t w e d
t

w e d

 

 

   
 

 

    

    


 



  

(B.9a) 

   
       

       

1

2
1

( )
t D r t t M t

t

t D r t t M t

t

t e d
t

e d

    

    

  
 



      

       


 




 (B.9b) 
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Using (B.8) and (B.5) we can write the dynamic system in (B.1) as:  

 ( ) ( ) ( ) ( ) ( )k t Zk t c t n k t     (B.10a) 

  
( ) ( ) 1

( ) ( )
( ) ( ) ( )

C

c t H t
r n

c t t c t
       


 (B.10b) 

 
( ) ( )

(1 )
( ) ( )

H

H t k t
Z r

H t H t
       (B.10c) 

  ( ) 1 (1 ) ( )t r t           (B.10d) 

From here we can redefine the system in terms of the stationary variables: , ,x c k y H k    of 

which the dynamics are: 

 ;
x c k y H k

x c k y H k
     (B.11) 

and (B.10d) so that system (B.10) can be written as:  

  
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

C

x t y t
r n Z n x t

x t t x t


           


 (B.12a) 

 
( ) 1

(1 ) ( ) ( )
( ) ( )

H

y t
Z r Z n x t

y t y t
            (B.12b) 

  ( ) 1 (1 ) ( )t r t           (B.12c) 

These three equations form the basis for the local dynamics of the equilibrium.  

To show that the ( , , )i i C H    terms are virtually constant over time, we proceed as 

follows, focusing on C , although the other two cases are analogous.  Letting t v s  , (B.4) may be 

written as 

 
     

   

0
1

0

,

,

D

C D

s p s C t s t ds
t v

p s C t s t ds





 






      (B.13) 

Recalling (2.5), we have 
( )( , ) ( , ) r sC t s t C t s t s e     .  In addition, suppose that consumption 

were to grow at the time-varying rate ( )C u  over the period ( , )t s t . Then 
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( )

( , ) ( , )

t

C
t s

u du

C t s t s C t t e



    and (B.13) can be written as 

   
   

 

( )
( )

0
1

( )
( )

0

t

C
t s

t

C
t s

D u du
r s

C
D u du

r s

s p s e e ds
t v

p s e e ds

 

 
















 




     

(B.13’) 

To show that Cd dt  is very small we take the time derivative of (B.13’) to obtain 
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 
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t s
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D u du
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C C
C
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r sC
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C C
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p s e e t t s dsd dt

p s e e ds

s p s e e t t s ds

s p s e e ds

 

 

 

 

 



  























  



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











 

which can be written more compactly as 

 
 

0 0

0 0

( , )[ ( ) ( )] ( , )[ ( ) ( )]

( , ) ( ) ( , )

D D

C C C C
C

D D

C

F s t t t s ds s F s t t t s dsd dt

F s t ds s F s t ds

    

 

   
 
 

 
 (B.14) 

where  
( )( )( , ) 0

t

C
t s

u dur sF s t p s e e
  

   .  Equation (B.14) simplifies to 

 
 

0 0

0 0

( , ) ( ) ( , ) ( )]

( ) ( , ) ( , )

D D

C C
C

D D

C

s F s t t s ds F s t t s dsd dt

s F s t ds F s t ds

  

 

 
 
 

 
    (B.14’) 

Written in this way, we see that the percentage rate of change of C  is the difference of two 

weighted averages of the consumption growth rate, ( )C t s  .  If either the consumption growth rate 

is constant over time or the death rate is uniform across age, (B.14’) is zero and C  is indeed 

constant over time.
32

  Otherwise, if we let max min,C C   denote the maximum and minimum 

consumption growth rates, (B.14) implies: 

                                                 
32

 Note that the uniformity of the death rate across agents is the core feature of the mortality structure adopted by 

Blanchard (1985). 
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max minC
C C

C

d dt
 


 

  

    (B.15) 

Assuming that the potential variation in the consumption growth rate is restricted to a few 

percentage points, (B.15) suggests that as a practical matter the percentage variation of C  over time 

is extremely small, and given that C  itself is small, C  can essentially be treated as constant and 

independent of t .  Analogous arguments apply to ,H  , thereby enabling us to approximate them 

all as constants in addressing the dynamic adjustment of the aggregate economy. 

 Linearizing (B.12a) – (B.12c) around the steady state, the local dynamics can be expressed 

as: 

 

2

(1 ) 0

1
0 0

y
x y

xx x x
Z

y y y y
y

  



 
  
       

    
      

         
 
 
  

 (B.16) 

where tildes denote the steady-state values of dynamic variables. The three eigenvalues will be 

positive, and the system therefore unstable, if and only if: 

 

( ) 0,

( ) (1 ) 0,

( ) (1 ) 0.

i

Z y
ii x

y x

Z y
iii x y

y x




 


 

   


 
    

  

 

 In order to study the dynamics further it is convenient to write the steady-state values of 

, ,x y  in terms of the (.)  functions discussed in Appendix A above.  To do this we substitute the 

balanced growth conditions into (2.7a), (2.7b), (3.2) and (3.5) resulting in  

   1 r     
 

(B.17a) 

  
 

  
  
 

* *

1
1

r n r
x Z

nr

     


  

   
 

 
 (B.17b) 
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  *(1 ) ,y Z r      (B.17c) 

where we have used the demographic steady state  1/ .n    Straightforward inspection of 

(B.14a) reveals that condition (i) is always met regardless of the values of the underlying parameters. 

Using (B.14) we can rewrite condition (ii) above as: 

 
1 1

0
A C

E
A B D C
    (B.18) 

where:  

 

    

    
 

*

*

1

1

A r B r

D n C n r

E Z

    

    



    

    

 

  

In order to show that (B.15) holds we can use the fact that if C A  the condition holds for sure. 

C A  implies that     n r r           which again implies that 

  * *n r r        , where we have used that ' 0  . Simple rewriting yields: 

 *

2

r r n 


  
 , which we know to be true from (P2.3) and (P2.4). 

Similar reasoning does not, however, allow us to determine the validity of condition (iii). In 

order to study that condition we rely on numerical simulations, as discussed in the text. 

C: Computation of Equilibrium Values of , ,C H    

From (3.10) we know that: 

  
     

   
1

,

,

t

t D
C t

t D

t v p t v C v t dv
t v

p t v C v t dv


 



 
 






 (C.1) 

Using the Euler equation, the fact that along the balanced growth path    ,C v v w v  is independent 

of v , and the wage rate grows at the constant rate  , we can write (C.1) as: 

 
       

     

t r t v

t D

t r t v

t D

t v p t v e dv

p t v e dv

  

  


  


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

 






 (C.2) 
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Recalling the demographic steady-state relationship (2.8) we can write (C.2) in the age domain as: 

 
      

    

0

0

D n r s M s

D n r s M s

s e ds

e ds

  

  


    

    




 (C.3) 

where s t v   is the age of the agent.  This expression is seen to be independent of calendar time t . 

Using the definitions of   in (3.5) and  s  for the BCL demography gives: 

 

  

  

1

01

0 1

D n r s
e ds

n r

   



    

    

   


 (C.4) 

Evaluating the integral then gives: 
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which for our specified parameters yields the value 0.0184.  

From (B9.a) we know that: 
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Using the same arguments as above this can be shown to be independent of t and for the BCL 

function is: 
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and assumes a simulated value of 0.0034.  Similarly, from (B9.b) we obtain for the BCL function: 
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which assumes a value of 0.0048. 
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