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Abstract. Based on formal results for population dynamics under varying fertility and mortality 

levels, this paper presents a new approach to backward population projection. Unlike other 

methods in the literature, the method presented here is robust and accurate in both the short and 

long run. The method and the theory behind it contribute to the knowledge about dynamic 

populations and may find applications in population modeling and reconstruction. Details of the 

backward projection method have been published recently in the Int J Forecasting but has not yet 

been well presented to the demographic audience. Here, I present those results as well as the 

underlying theory of dynamically stable populations. 

 

For long time, the backward population projection has remained an unsolved problem. 

Formally speaking, the population projection matrix (L) is singular, and therefore the usual 

matrix equation of forward population projection Pt+1 = LPt , where Pt is the vector consisting of 

1 January population numbers by single years of age, may not be inversed (as there is no L
−1

 for 

obtaining Pt = L
−1

Pt+1). An ‘easy’ way of overcoming this limitation by truncating the projection 

matrix at the last age at reproduction and then inversing the truncated matrix turned out not to 

work due to the instability of the results (Keyfitz, 1977).  

The fundamental cause of this instability lies in the spectral properties of the population 

projection matrix (of the renewal operator in the continuous model): while the real eigenvalue 

(which determines the population intrinsic rate) dominates the spectrum of the forward 

projection matrix, it is dominated by all other (complex) eigenvalues in the backward projection.  

Greville (1968), Greville and Keyfitz (1974) and Keyfitz (1977) proposed using a 

generalized inverse of L, which (the inverse) has only three non-zero eigenvalues. However, this 

method only works for projection over short intervals, because the two remaining complex 

eigenvalues still dominate the real eigenvalue, which should determine the population dynamics 

in the long run. 

In our approach, we use results from the theory of demographic potentials and of 

dynamically stable populations. Unlike with the dynamics of births, the demographic potential of 
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the newborn is determined by a renewal equation that is stable when applied to backward, not 

forward, projections. At the same time, in a class of populations we call dynamically stable 

populations the demographic potential of the newborn and number of births are inversely 

proportional. This property allows converting the (robust) backward renewal for the potentials 

into a simple model, the basic backward projection model, for the number of births and, hence, 

of the population: 

         



0

11 ,, dyytBtyftyltB , (1) 

where B(t) is the intensity of births, l(x,t) and f(x,t) – survival and fertility functions of age x and 

birth cohort t;   is the upper age limit of childbearing. 

The simple model produces rather accurate projections when the dynamic stability 

assumption is roughly adequate (Fig. 1).  

 

Fig. 1. Backward projection of female births in Sweden from the 1935 population: reverse survival in 

1880-1934 and basic backward projection prior to 1880 

 
Source: Author’s own calculation based on data from Festy (1979), Human Mortality Database (2009) and Human 

Fertility Database (2009) 
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Demographic content of this assumption may be interpreted as stability of timing of 

childbearing. Although this assumption was used in some studies on historical reconstruction, 

there may be many situations that violate the dynamic stability assumption. When there are 

substantial changes in the timing of childbearing, the model above may be further improved by 

introducing the effect of timing change on the births number (the tempo effect). To this end, we 

apply tempo-adjustment coefficients R(t) to the births’ intensity in (1): 
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tyftyl
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tB
. (2) 

Based on analytical results for dynamical stability and decomposition of general population 

change into smoothing process and tempo effects (see Appendix), we present three adjustment 

procedures: 

- rough approximate based on the mean age at childbearing,  
 tMAB

tR
1

 ; 

- more accurate one calculated from the dynamics of demographic potentials, 

 
     

   

    1,

,,
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
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, where     
x

dxxtxutU ,  is 

the cross-sectional sum of remaining proportions of cohorts’ demographic potentials (see 

the Appendix) and the first summand represents accumulation of past tempo-effects; 

- and a method of intermediate complexity where cumulated past tempo-effects are 

approximated through the change in the mean age at childbearing and supplemented by 

the current tempo-effect,  
 
 tMAB

tU
tR




1
. 

Although approximate, the backward projection models with adjustment for the tempo-effect 

show good results when applied to real data (Fig. 2). 

 

Further details on backward projection method: Ediev D.M. 2011. Robust backward 

population projections made possible. Int J Forecasting 27, 1241–1247. 

Details on the dynamic stability are presented in the Appendix. 
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Fig. 2. Projection of female births in Sweden from 2008 backwards: basic backward projection and two 

backward projections adjusted for the deviation from dynamic stability 

 
Source: Author’s own calculation based on data from Festy (1979), Human Mortality Database (2009) and Human 

Fertility Database (2009) 

 

 

Conclusion. Apart from being important for the formal demography in showing the very 

possibility of robust backward projection, our results may have further applications in theoretical 

and practical studies. The theory of dynamic populations behind our method and the good fit of 

backward projections based on adjusting for the tempo effects indicates key role of those effects 

in population dynamics. It seems that, while the overall development in births is determined by 

general levels of fertility and mortality, all short-term fluctuations (but also long-term shifts in 

trend due to changing MAB) are caused by tempo effects. This observation, in its turn, may open 

up possibility to reconstruct the tempo effects and, using them, the historical change in the mean 

age at childbearing – a task that has not been resolved yet in reconstruction studies (Lee, 1974, 

1985; Oeppen, 1993; and Wrigley and Schofield, 1982, assumed time-invariant MAB in their 

models). These same results may also help simplify population projections forward, which may 

be conducted by projecting the general (smooth) trends in births and tempo-distortions instead of 

the conventional components method. These possibilities deserve further study. 



5 
 

Appendix. On the dynamically stable population 

 

1. Introductory results from the theory of demographic potential 

Demographic potentials (Ediev, 2003a, 2007a, 2007b, 2009a) are defined through asymptotic relations 

between direct descent of individuals or sub-populations: 

 
 tP

tP

c

c

B

A

t

def

B

A


 lim , (A.1) 

where Ac  and  tPA  are the demographic potential and population of direct descendants by time t for a 

(sub)population ‘A’ (that could denote any group of individuals or a single individual); same for the 

(sub)population ‘B’. 

The change over time of individual demographic potentials is described by renewal equations 

resembling those for the population renewal, with reversed time flow, e.g., for the potential of newborn: 

 
x

xttx

t

tx

t cF
L

L
c 1,0,

,0

,

,0 , (A.2a) 

txc ,  is demographic potential of a person at age x  born in year t ; txL ,  is the life table population for the 

birth cohort t ; and txF ,  is the fertility rate at age x for the birth cohort t . Or, in continuous form: 

        



0

,0,,,0 dxxtctxftxltc , (A.2b) 

here   is the maximum childbearing age. Renewal Eq. (A.2a), Eq. (A.2b) is robust and shares ergodic 

property similar, in reversed time, to the ergodic property of population renewal (Arthur, 1982) under the 

same conditions (Ediev, 2007b). 

The vector of age-specific demographic potentials  Ttttt ccc   ,1,1,0 ...c  (  is the 

lifespan limit; superscript ‘T’ denotes transpose) in period t is described by matrix relation resembling the 

population projection equation involving the time-dependent population projection (Leslie) matrix L: 
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t

T

t

T

t Lcc 1 . (A.3) 

(Similar equation may be derived in the continuous case, using matrix of survival and fertility operators, 

see Ediev, 2007b.) 

The total demographic potential of the population closed to migration is time-invariant. In 

discrete case, that follows immediately from (A.3) and population renewal: 

   11111   tCtC t

T

ttt

T

tt

T

t PcPLcPc , (A.4) 

where   11,,1,0 ...  tttttt PPP PLP   is the vector of age-specific population numbers at time t. 

Proof for the continuous case may be found in Ediev (2007a, 2007b). 

For further analysis it will also be useful to note the following general formal relation between 

demographic potentials, survival and fertility (Ediev, 2010): 
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, 
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 , (A.5a) 

where 
t

tx

t

tx
def

tx
c

c

L

L
u

,0

,

,0

,

,   is the proportion remaining by age x of demographic potential of the birth cohort t 

(alternative interpretation could be: the expected relative future potential of newborn). In the continuous 

case: 

 
 

 
 

 
x
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tc

txl
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




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,

,0
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,

1
, , (A.5b) 

where    
 
 tc

txc
txltxu

def

,0

,
,,  . 

Age pattern of the proportions u(x) is one of the most stable characteristics of population 

reproduction, although it is sensitive to changes in timing of reproduction (Ediev, 2007b, 2009b). The 

latter property is evident from the link between these quantities and the cohort mean age at reproduction 

of the demographic potential (from Eq. (A.2a) and Eq. (A.5a)): 
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Similarly: 

 
     

     

 
 
















xx

x

x
def

dxtxudx
x

txu
x

dxxtctxftxl

dxxtctxftxxl

tA ,
,

,0,,

,0,,

. (A.6b) 

 

2. Dynamically stable population. Decomposition of births into tempo effects and smoothing 

process. 

Time-invariance of the total demographic potential indicates that the scales of population size and 

individual demographic potentials should be in inverse relation. Indeed, in a stable population, where the 

annual number of births is an exponential function of time,   ttB  ,   being the (Lotka’s) stable 

population growth rate, the demographic potential of newborn is exponential function with inversed time, 

  ttc  0 , so that the total potential of births in a given year is time invariant. Although the exponential 

growth may not be extended to general dynamic populations, some important analytical results may be 

obtained for populations with postulated time-invariance of the total potential of newborns: 

constPc tt ,0,0  (A.7a) 

or, in continuous form: 

    consttBtc ,0 . (A.7b) 

We term the population satisfying this property the dynamically stable population. The population may be 

dynamically stable either permanently or over a given period of time when Eq. (A.7a) or Eq. (A.7b) 

applies. An important implication of dynamic stability is possibility of robust backward renewal that 

follows from Eq. (A.2a) or Eq. (A.2b) (Ediev, 2011): 
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           



0

11 ,, dxxtBtxftxltB . (A.8b) 

  To find out demographic conditions for dynamic stability, the following decomposition of 

population change may be used that follows from Eq. (A.5a), Eq. (A.5b) and usual population renewal 

equations: 
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where 
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1,  are non-negative weights that are proportional, in each age, to the 

net maternity in respective cohort and sum up to unity, they determine smoothing process for the total 

demographic potential of newborns; that process, however, is continuously distorted by the multiplier 

before summation in Eq. (A.9a) where quantities  
y

yty

p

t uU ,  are related to the timing of 

reproduction. In continuous model: 
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where nonnegative function  
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,  integrates over age to unity and 

    
y

p dyytyutU , . 

The multipliers distorting the smoothing process in Eq. (A.9a) and Eq. (A.9b) resemble, not 

incidentally, the Timing Index (TI) of Butz and Ward (1979, 1980) and Ryder (1980). Those authors 

defined the TI as a cross-sectional sum, over age, of proportions of cohort completed fertility that fall 

within the calendar period of interest. When cohorts share a similar timing of fertility (but not necessarily 

a similar level of completed fertility), the TI is time-invariant and equals one. As can be seen from 

Eq. (A.5a) and Eq. (A.5b) (and also from the very definition of quantities txu ,  and  txu , ), decrements 

ytyyty uu   1,11,  in Eq. (A.9a) or 
 

y

ytyu






,
 in Eq. (A.9b) are proportions of respective cohort’s 

demographic potential reproduced in the calendar period t. Summing them up cross-sectionally produces 

quantity similar to the TI. To see that this resemblance is not incidental, note that TFR (explained through 

the TI) assumes no mortality and stationary age composition of the synthetic cohort. Under no mortality 

and stationary population, proportion of cohort fertility and proportion of cohort’s demographic potential 

reproduced at a given age are equal. Despite that the two indices may differ in realistic conditions, we 

term the multiplier in Eq. (A.9a) and Eq. (A.9b) the Timing Index (TI) assuming it refers to the tempo 

effects in the reproduction of demographic potential. Change in TI indicates presence of tempo-effects 

that distort the smoothing process of the births’ total demographic potential. Link of the TI to the timing 
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of reproduction may also be evident in the final expression for the multiplier that features the change over 

time of 
p

tU  and  tU p
. As we saw earlier (Eq. (A.6a), Eq. (A.6b)), u(x) integrated over age in a birth 

cohorts equal the mean age at reproduction of demographic potential in the cohort. When integrated 

cross-sectionally, a similar result applies only when cohorts share similar timing of reproduction and TI 

equals one. More generally, 
p

tU  is in the same relation to the mean ages at reproduction as the relation of 

the cross-sectional average length of life, CAL (Brouard, 1986; Guillot, 2003), to the life expectancy at 

birth. Similar to the CAL (Goldstein, 2006), 
p

tU  may be shown to approximate the mean age at 

reproduction in the cohort currently at such age. Empirically, the cross-sectional 
p

tU  corresponds well to 

the period mean age at childbearing (e.g., Figure A1). 

Figure 1. Change over time of the period mean age at childbearing (MAB) and the cross-sectional sum of 

remaining proportions of cohorts’ demographic potentials (U per). Sweden, 1850-2008. (Estimates of 

U per for the most recent periods are based on assumption of constant future fertility rates.) 
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Summarizing the description of the decomposition Eq. (A.9a), Eq. (A.9b), the demographic 

potential of newborns is described by a smoothing process that may, however, be interrupted by tempo 

effects when TI deviates from unity. That would also imply deviation from the dynamical stability, would 

the population be dynamically stable before the tempo effect occurred. The decomposition also indicates 

that, once the tempo effects cease to affect the population dynamics, fertility being nonnegative (hence, 

    01   tutu xx ) and meeting the usual “no-common-divisor” condition of ergodicity (Arthur, 1982), 

the smoothing process will lead to convergence of the total annual demographic potential of newborns to 

a constant level and of population to the dynamically stable trend.  

When, in particular, the age pattern of reproduction xtx uu , ,    xutxu ,  is time-invariant 

(this is a generalization to the quadratic hyperstable or metastable model by Kim and Schoen (1996), 

Schoen and Jonsson (2003), and Schoen (2006), see Ediev (2009b)), the mean age at childbearing 

observed in the dynamically stable population equals U and the cohort mean age at reproduction of 

demographic potential Eq. (A.6a), Eq. (A.6b) and is time-invariant: 
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Time-invariance of the population total demographic potential allows obtaining a general result 

for the annual total potential of newborns in the dynamically stable population, where

UPcuPcPucPc
L

L
C tt

x

xtxtt

x

xtxtxxt

x

xtxtx

xt

xtx

,0,01,,0,01,01,1,01,01,

1,0
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  




, that is: 

U

C
Pc tt ,0,0 . (A.11a) 

Continuous case:                UtBtcdxxtBxtxuxtcdxxtBxtxcxtxlC
xx

,0,,0,,   , 

that is: 

   
U

C
tBtc ,0 . (A.11b) 

For an initially not dynamically stable population, that would be the asymptote in the absence of new 

tempo effects. These relations show that it is possible to extend to the dynamically stable case the more 

narrow result that the births in the stable population equal the total reproductive value (    tcCtV ,0 , 

Ediev, 2007a, 2009a) divided by the mean age at childbearing in the population as well as the related 

results for the population momentum. 
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