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Abstract

We extend Bayesian population reconstruction, a recent method for estimating past

populations by age, with fully probabilistic statements of uncertainty. It simultaneously

estimates age-specific population counts, fertility rates, mortality rates and net inter-

national migration flows from fragmentary data while formally accounting for measure-

ment error. As inputs, Bayesian reconstruction takes initial bias-reduced estimates of

age-specific population counts, fertility rates, survival proportions and net international

migration. We extend the method to apply to countries without censuses at regular in-

tervals. We also develop a method for using it to assess the consistency between model

life tables and available census data, and hence to compare different model life table

systems. We show that the method works well in countries with widely varying levels of

data quality by applying it to reconstruct the past female populations by age of Laos, a

country with little vital registration data where population estimation depends largely

on surveys, Sri Lanka, a country with some vital registration data, and New Zealand,

a country with a highly developed statistical system and high-quality vital registration

data.

Keywords: Bayesian hierarchical model, Fertility, International migration, Model

life table, Mortality, Vital registration data.

The release of World Population Prospects 2010 (WPP 2010; United Nations [UN], 2011a)

coincided with considerable interest in the size of the world population in both the popular

and academic literature (e.g. Gillis & Dugger, 2011; Reuters, 2011; Phillips, 2011; Nagara-

jan, 2011; Alberts, 2011) perhaps due to the then imminent arrival of the seven billionth

person. There was considerable uncertainty about when that person would be born. In this

article, we extend and apply a new method, introduced by Wheldon, Raftery, Clark, and

Gerland (2012, to appear), for estimating past and current population by age and sex and

for assessing the associated uncertainty.

Information about uncertainty can be conveyed by providing interval estimates, rather

than simply point estimates as is done for many official statistical releases. Such intervals

DRAFT ONLY: DO NOT CITE 2



SUBMISSION TO PAA 2013

should have a probabilistic interpretation; they should contain the true value with some

specified probability, conditional on the assumed statistical model. Wheldon et al.’s 2012, to

appear method produces such intervals. It reconstructs population structures of the past by

embedding formal demographic relationships in a Bayesian hierarchical model. The outputs

are joint probability distributions of demographic rates and population counts from which

fully probabilistic interval estimates can be derived in the form of Bayesian confidence inter-

vals (or “credible intervals”). The method has been designed to fit within the United Nations

Population Division (UNPD)’s current work-flow and to deal with the lack of reliable data

commonly experienced in many developing countries. Nevertheless, we hope it is general

enough to be useful for other demographers interested in estimating population structures

of the past. We will refer to the new method as “Bayesian reconstruction”.

Our aims are as follows. We show that Bayesian reconstruction is useful in a wide

range of data quality contexts by reconstructing the populations of countries for which data

quality varies from poor to extremely good. In all cases, Bayesian reconstruction indicates

when estimates of vital rates are inconsistent with census results. This means that the

method can be used to compare competing model life tables. We also extend the method to

unevenly spaced censuses.

The remainder of the paper is structured as follows. In the next section we review ex-

isting methods of population reconstruction. Following that, we describe the method. Then

we apply Bayesian reconstruction to the female populations of three countries: The Peo-

ple’s Democratic Republic of Laos (Laos), Sri Lanka and New Zealand. The New Zealand

case shows that the model performs sensibly for countries with very good data and the

Laos case for fragmentary data. We use the case of Sri Lanka to demonstrate our exten-

sion to unevenly spaced censuses. Bayesian reconstruction detected inconsistencies between

survey-based estimates of fertility and intercensal population changes, and provided a cor-

rection. There is relatively little mortality data for Laos and we use this case to illustrate

how Bayesian reconstruction can be used to choose between competing model life tables. We
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conclude with a discussion.

POPULATION RECONSTRUCTION METHODS

Many human population reconstructions in the demography literature fall into one of two

categories: reconstruction of populations of the distant past using data of the kind commonly

found in European parish registers (e.g. Lee, 1971, 1974; Wrigley & Schofield, 1981; Oeppen,

1993a, 1993b; Bertino & Sonnino, 2003) and reconstruction of population dynamics after

extreme crises such as famine or genocide (e.g. Boyle & Ó Gráda, 1986; Daponte, Kadane, &

Wolfson, 1997; Heuveline, 1998; Merli, 1998; Goodkind & West, 2001). General methodology

has been primarily developed in the former context, the latter being necessarily focused on

special cases. In some form or another, the cohort component model of population projection

(CCMPP) (Lewis, 1942; Leslie, 1945, 1948) is central to almost all methods of population

reconstruction.

Two significant developments were Lee’s (1971, 1974) “inverse projection” and Wrigley

and Schofield’s (1981) “back projection”. Inverse projection converts counts of births and

deaths into the respective rates. Reconstruction proceeds forward in time. Counts of base-

line population and model age patterns of fertility and mortality are also required. Where

at least two independent estimates of population size are available, net migration can also

be estimated (Lee, 1985). In contrast, back projection takes counts at the terminal year and

then moves backward in time, reconstructing population counts and net migration along

the way. Several iterations might be required to produce a satisfactory result. There was

considerable debate about the efficacy of back projection, centered partly around identifi-

ability issues that arise from trying to “resurrect” members of the open ended age group

and simultaneously estimate fertility, mortality and migration rates (Lee, 1985, 1993). Fur-

ther developments are described by Barbi, Bertino, and Sonnino (2004). Oeppen (1993a),

Oeppen (1993b) and Bonneui and Fursa (2011) frame reconstruction as a high dimensional
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optimization problem. All of the above methods are deterministic and produce point esti-

mates only.

Stochastic inverse projection (SIP) was proposed by Bertino and Sonnino (2003). It incor-

porates a specific kind of stochastic variation into the reconstruction, taking inputs similar

to those required by inverse projection. Model age patterns of fertility and mortality are

treated as individual-level probabilities of death rather than fixed, population-level rates.

Like its predecessors, stochastic inverse projection (SIP) was designed to work with accurate

time-series of total births and deaths. The uncertainty in the final estimates comes only

from modeling birth and death as stochastic processes at the level of the individual (Lee

1998 called this “branching process uncertainty”). There is no allowance for measurement

error in the data, nor is there any stochastic variation in the model fertility and mortality

age patterns. For most developing and less-developed countries, information about births

and deaths is not highly accurate, and age patterns of births and deaths are known only

approximately. In these cases, the uncertainty is due mainly to measurement error. In fact,

even for well-measured populations, at the national level where counts are large, Lee (2003)

and E. Cohen (2006) note that uncertainty due to stochastic vital rates is likely to be small

relative to uncertainty due to measurement error; see also Pollard (1968).

The aim of Daponte et al. (1997) was to construct a counterfactual history of the Iraqi

Kurdish population from 1977 to 1990, a period during which it was the target of consid-

erable state-sponsored violence. A Bayesian approach was taken in which vital rates and

population counts were modeled as probability distributions. Prior distributions for fertil-

ity and mortality rates based on survey data and beliefs about the uncertainty founded on

studies of the data sources, historical information and knowledge of demographic processes.

Conclusions from estimated posterior distributions took the form of fully probabilistic in-

terval estimates. This approach took account of uncertainty due to measurement error and

made use of contextual knowledge to make up for fragmentary, unreliable data. However,

there were some restrictions, such as allowing mortality to vary only through the infant
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mortality rate and specifying fixed age patterns of fertility. Our approach is similar in spirit

but more flexible as no model age patterns are assumed to hold throughout the period of

reconstruction.

METHOD

Mathematical details can be found in Wheldon et al. (2012, to appear). Here we give a

more conceptual overview. All computation was done using the freely available statistical

software package R (R Development Core Team, 2012); Bayesian population reconstruction

is implemented in the package “popReconstruct”.

Description of the Model

The method reconciles two different estimates of population counts, those based on adjusted

census counts (or similar data) and those derived by projecting initial estimates of the base-

line population forward using initial estimates of vital rates. Adjusted census counts are

raw counts which have been processed to reduce common biases such as undercount and age

heaping. Since projection is done using the CCMPP, the parameters for which we require

initial point estimates are the CCMPP inputs, namely population counts for the baseline

year, fertility rates, survival proportions and the net number of migrants, all by age group,

over the period of reconstruction. Migration is treated in the same way as fertility, mortality

and baseline population counts.

Estimates of the measurement error for each parameter are also required. These can be

based on expert judgment or preliminary analyses such as post-enumeration surveys. Data

and expert knowledge sufficient to generate these inputs are available for most countries

from about 1960. The comparison is through a Bayesian hierarchical (or multilevel), sta-

tistical model which provides probabilistic posterior distributions of the inputs, as well as

population counts at each projection step in the period of reconstruction.
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Initial point estimates of the input parameters are derived from data. Baseline popula-

tion estimates come from adjusted census counts (or similar sources), fertility and mortality

estimates from surveys such as the Demographic and Health Surveys (DHSs) and vital

registration. The model defines a joint prior distribution over these parameters which is

parameterized by the initial point estimates and standard deviations. Typically, the initial

point estimates will serve as the marginal medians of this distribution, but this is not a

requirement. The standard deviations represent measurement uncertainty about the point

estimates. These distributions induce a probability distribution on the population counts at

the end of each projection step within the period of reconstruction. Uncertainty about the

true population numbers at the time of a census is also modeled by probability distributions.

Adjusted census counts are taken as the median of these distributions and measurement

uncertainty is represented analogously by standard deviations.

It is important that counts (adjusted or otherwise) from censuses in years after the base-

line year not be used to derive initial estimates of fertility, mortality and migration. This

means, for example, that intercensal survival rates should not be used to estimate mortal-

ity, and that “residual” counts, the difference between census counts and counts based on

a projection using fertility and mortality alone, should not be used to estimate migration.

Doing so would amount to using the census data twice, once to derive initial estimates of

vital rates and once to derive adjusted census counts, which would lead to an underestimate

of uncertainty.

In standard Bayesian terms, treating the induced distribution of projected counts as a

prior and the distribution of census counts as a likelihood, Bayesian reconstruction yields a

posterior distribution of the inputs via Bayesian updating. This distribution can be usefully

summarized by marginal Bayesian confidence intervals for each input parameter which ex-

press uncertainty probabilistically. Furthermore, confidence intervals for age-summarized

parameters such as total fertility rate (TFR) and life expectancy at birth (e0) can be ob-

tained. Using simulation, Wheldon et al. (2012, to appear) found that Bayesian reconstruc-
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tion produced well-calibrated marginal Bayesian confidence intervals. That is, p-percent

Bayesian confidence intervals for each parameter of interest were found to contain the true

value p percent of the time.

Often, projected counts based on a sample from the joint prior on the input parameters

will not equal the same-year adjusted census counts. This discrepancy is sometimes called

an “error of closure” (Preston, Heuveline, & Guillot, 2001). The discrepancy can be reduced

by making appropriate adjustments to any, or all, of the CCMPP input parameters and

census counts. Many different combinations of adjustments will have the same effect on

the discrepancy; for example, adding a migrant of age x has the same effect on the age-x

population count as removing a death to a person of age x. The posterior distribution is

a distribution over all possible combinations of CCMPP input parameters which assigns

higher probability to those combinations leading to larger reductions in the discrepancy.

This means that each age-time specific component of the input parameters is not affected

equally, but proportionately according to the effect it has on the joint posterior.

In our case studies, the periods of reconstruction are delimited by the earliest and most

recent censuses. Reconstruction can be done beyond the year of the most recent census if

initial estimates of vital rates and international migration are available, but these latter

initial estimates cannot be updated without a census.

Bias

Estimates of vital rates and population counts from surveys and censuses are susceptible to

bias. For example, fertility rate estimates based on birth histories suffer from omission and

misplacement of births due to recall error and census counts may be biased due to under-

count in certain age groups (Zitter & McArthur, 1980; Preston et al., 2001). Bayesian recon-

struction does not treat bias explicitly because demographic data differ markedly across pa-

rameters, time and countries. Many methods for estimating and reducing these biases have

been proposed such as post-censal enumeration surveys (e.g., United Nations [UN], 2008,
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2010), “indirect” methods (e.g., United Nations [UN], 1983), and Alkema, Raftery, Gerland,

Clark, and Pelletier’s (2012) method for TFR. Methods appropriate for adjusting census

data will not, in general, be applicable to vital registration or survey data. Even within

these broad categories, there is great variation among countries and time which makes

development of a general approach infeasible. Therefore, the analyst applying Bayesian re-

construction will need to select bias reduction methods appropriate to the data being used.

We illustrate some possibilities in the case studies.

Measurement Error Uncertainty

Bias reduced initial point estimates of the CCMPP input parameters are still subject to

measurement error; that is, variation that is non-systematic and cannot realistically be

eliminated or otherwise modeled. In Bayesian reconstruction, measurement error is rep-

resented by the prior standard deviations of the initial estimates. In many cases there is

not much data with which to estimate these parameters, but there is often a great deal of

relevant expert knowledge. This can be included by giving the variances themselves prior

distributions and using the expert knowledge to set the fixed hyperparameters of these

distributions, thereby defining a hierarchical model. To do this, we require a value for p

in statements of the form “there is a 90 percent probability that the true fertility rates are

within plus-or-minus p percent of the initial point estimates”, and similarly for survival pro-

portions, migration proportions and population counts. We asked UNPD analysts to provide

p, which we refer to as the “elicited relative error”.

CASE STUDIES

To show that Bayesian reconstruction works in a variety of situations, we used the subjective

but useful evaluations of UNPD analysts to select three countries based on the quality of

their mortality rate data: 1) New Zealand, with complete vital rate data based on vital
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registration; 2) Sri Lanka with good vital rate data requiring only small adjustments; 3)

Laos with only limited under-five mortality estimates available and fertility data from a

few demographic surveys. Thus we analyze New Zealand with excellent data, Sri Lanka

with intermediate data, and Laos with poor data. Wheldon et al. (2012, to appear) analyzed

Burkina Faso which, in terms of data availability, sits between Laos and Sri Lanka, having

data on both adult and under-five mortality.

Each case is discussed separately below. We briefly describe the original data sources

and the processes used to derive the initial estimates, and present results for four demo-

graphic parameters: TFR, net number of migrants, e0 and under-five mortality. We give the

limits of 95 percent Bayesian confidence intervals of our initial estimates and the posterior

distributions of selected parameters using the notation: “(lower, upper)”. We compare our

results for fertility and mortality to those published in WPP 2010 for years with comparable

estimates. WPP 2010 was based on a different procedure but the same data, therefore the

comparison is useful.

Laos, 1985–2005

Data and Initial Estimates

National censuses were conducted in 1985, 1995 and 2005. These data allow us to recon-

struct the female population between 1985 and 2005. We used the census year counts in

WPP 2010; there were no post-enumeration surveys, but these counts were adjusted to com-

pensate for undercount in certain age groups.

Initial estimates of age-specific fertility rates were based on direct and indirect esti-

mates from the available surveys. Age-specific initial estimates were obtained by multiply-

ing smoothed estimates of TFR by smoothed estimates of the age-pattern of fertility. Due to

the small number of data points, smoothing was done by taking medians across data source

for each age- time-period.
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The only available mortality data are for infant and under-five mortality. Therefore our

initial estimates came from the Coale and Demeny (1983) West (CD West) model life tables

with values of 1q0 and 5q0 close to those estimated from available data.

Elicited relative errors for population counts, fertility and mortality were set to 10 per-

cent.

There is not much information about migration. To model this, we set initial point es-

timates to zero for all ages and time periods, but used a large elicited relative error of 20

percent.

Results

Figure 1 shows our prior and posterior distributions for the four demographic parameters

together with WPP 2012 estimates for fertility and mortality. The Bayesian reconstruction

estimate of TFR differs from the initial estimates in the five-year periods beginning 1985,

1990 and 2000. While both imply consistent decreases in fertility, the initial estimates ap-

pear to be too high in all but the third five-year period. Our posterior intervals suggest a

level of fertility more similar to WPP 2010, except our estimates suggest that the accelera-

tion in the decline begins one five-year period later.

Migration is estimated simultaneously with fertility and mortality. Posterior uncertainty

for the average annual total net number of migrants has been significantly reduced relative

to prior uncertainty (Figure 1b). The mean half-width of the posterior intervals is 6,099

compared with 142,777) for the prior intervals.

Figure 1a shows that the posterior intervals are not constrained to lie inside the prior

intervals.
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Figure 1. Prior and posterior medians and 95 percent Bayesian confidence intervals of selected
parameters for the reconstructed female population of Laos, 1985–2004. Prior medians corre-
spond to initial estimates. (a) Total fertility rate. (b) Total net number of female migrants (aver-
age annual). (c) Female life expectancy at birth. (d) Female under-five mortality rate (deaths to
0–5 year olds per 1,000 live births).
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Sri Lanka, 1951–2001

Data and Initial Estimates

Censuses were conducted in Sri Lanka in 1953, 1963, 1971, 1981 and 2001 and so we recon-

struct the female population between 1953 and 2001. We took population counts from WPP

2010 which were adjusted to account for underenumeration. Initial estimates of age-specific

fertility rates were derived in a manner similar to that used for Laos, although at the level

of TFR we used loess (Cleveland, Grosse, & Shyu, 1992; Cleveland, 1979) to smooth mul-

tiple data points across time-period. Initial estimates of age-specific survival proportions

were based on abridged national life tables calculated form death registration and available

surveys. Elicited relative errors for all of these parameters were set at 10 percent.

We used the same default initial estimate of international migration as for Laos. Luther,

Gaminirante, de Silva, and Retherford (1987) provide age-specific estimates for the periods

1971–1975 and 1976–1980 using census data as well as information about vital rates. Their

results are not suitable as a basis for initial estimates because they were derived, in part,

from census counts, so we use them for comparison instead.

Interpolation to Handle Irregular Census Intervals

Wheldon et al. (2012, to appear) assumed that censuses were taken at regular intervals

but there is an irregular gap between the 1963 and 1971 censuses. Therefore, we propose

interpolating the CCMPP outputs on the growth rate scale such that they coincide with the

census years. We explain by way of an example.

Consider the number in the population aged [x, x+5] for which we have a census-based

estimate at 1963 and another census-based estimate at 1971. Initial estimates for vital rates

are available at 1963, 1968, 1973, and at subsequent five-year increments. The CCMPP can

be used with these data to derive projected counts for this age group in 1968 and 1973. To

compare the CCMPP output with the census counts at 1971, we assume that the growth

DRAFT ONLY: DO NOT CITE 13



SUBMISSION TO PAA 2013

rate for this age group, rx,1968, was constant between 1968 and 1973, and estimate it from

the projected counts. The estimate is then used to interpolate the CCMPP output to 1971.

Using a “hat” ( ̂ ) to denote “estimate”, this is compactly expressed as:

r̂x,1968 = 1
5

log
(nx,1973

nx,1968

)
; n̂x,1971 = (nx,1968)e3r̂x,1968 .

We use a similar method to extrapolate the population counts from the 1953 census back to

1951 using the 1953–1963 growth rate. Interpolating in this manner is adequate for periods

of length less than five years.

Results

Poster distributions for the demographic parameters are summarized in Figure 2. Our

posterior estimates of mortality and migration agree closely with those of WPP 2010 and

Luther et al. (1987). Applying Bayesian reconstruction suggests, however, that the sources

upon which the initial estimates were based are inconsistent with intercensal changes in

the number of births. The posterior estimates of TFR from Bayesian reconstruction differ

noticeably from the initial estimates in the periods 1951–1956 and 1956–1961 (posterior

intervals (5.11, 5.71) and (5.24, 5.88); initial estimates 5.01 and 5.03 children per woman,

respectively). Our method has automatically provided a correction which, in this case, yields

results similar to the WPP 2010 estimates.

New Zealand, 1961–2006

Data and Initial Estimates

Census counts came from national censuses conducted every five years between 1961 and

2006. Initial estimates of fertility rates were calculated from published age-specific fertility

rates (Statistics New Zealand, 2011a) and numbers of births (Statistics New Zealand, 2012)

by age-group of mother by year. Initial estimates for survival proportions were calculated
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Figure 2. Prior and posterior medians and 95 percent Bayesian confidence intervals and WPP
2010 estimates of selected parameters for the reconstructed female population of Sri Lanka,
1950–2000. Prior medians correspond to initial estimates. (a) Total fertility rate. (b) Total net
number of female migrants (average annual). (c) Female life expectancy at birth. (d) Female
under-five mortality rate (deaths to 0–5 year olds per 1000 live births).
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from New Zealand life tables (Statistics New Zealand, 2011b).

Information about the measurement errors of these parameters was available in the

form of census post-enumeration surveys (PESs) and estimates of the coverage achieved

by the birth and death registration systems. Elicited relative errors were based on this

information and were set to 2.5 percent, one percent, and one percent for population counts,

fertility and mortality, respectively.

Information about international migration is quite reliable given that New Zealand is

a small island nation with a well-resourced official statistics system. The basis of our ini-

tial estimates of international migration are counts of permanent and long-term migrants

(PLT) migrants taken from arrivals and departures cards (Statistics New Zealand, 2010).

The largest source of error in these data as estimates of international migration is the dis-

crepancy between the stated intentions and actual behavior of travelers. To reflect this, we

set the elicited relative error of this parameter to five percent.

Results

The posterior distributions for TFR, total net number of migrants, e0 and under-five mortal-

ity are summarized in Figure 3. Our posterior estimates of mortality and fertility follow the

initial estimates closely. This is not unexpected; the initial estimates were based on data of

high quality and coverage. The least reliable data, a priori, were those for migration. Our

posterior intervals suggest small corrections in some time periods. The initial estimates for

periods between 1961 and 1974 appear to be too high while those for periods between 1976

and 1989 are too low.
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Figure 3. Prior and posterior medians and 95 percent Bayesian confidence intervals and WPP
2010 estimates of selected parameters for the reconstructed female population of New Zealand,
1961–2006. Prior medians correspond to initial estimates. (a) Total fertility rate. (b) Total net
number of female migrants (average annual). (c) Female life expectancy at birth. (d) Female
under-five mortality rate (deaths to 0–5 year olds per 1000 live births).
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CHOOSING BETWEEN ALTERNATIVE INITIAL ESTIMATES

OF MORTALITY

In our application to Laos we derived initial estimates of over-five mortality from the CD

West model life table. This choice was made by UNPD analysts who drew on previous

studies (Hartman, 1996a, 1996b; United Nations [UN], 2011b). However, other approaches

are possible. Here, we compare the results above with those given by an alternative set of

initial estimates of survival based on a different model life table, and use them to explain

why the CD West model should be preferred. To do this, we look at the age specific mortality

rates, rather than e0.

The posterior distribution of e0 in Figure 1c was computed from the posterior distri-

bution of the age specific survival proportions, 5Sx[t, t+5], which are output by Bayesian

reconstruction. These were converted into age-specific annual mortality rates using the

separation factors implicit in the CD West life table. Medians and the limits of 95 percent

Bayesian confidence intervals for the marginal posterior distributions of these parameters

are shown in Figure 4 on the log scale. Posterior uncertainty about these quantities is very

low; the mean half-widths over age, within year, are all less than 0.004.

An alternative set of initial estimates for the 5Sx[t, t+5] was generated from the same

data on under-five mortality, but adult mortality was estimated using the Brass two-parameter

relational logit model with the United Nations South Asian (UNSA) model life table, e0 =

57.5 years. Figure 5 gives the initial estimates and marginal posteriors of the survival pro-

portions using these alternative survival estimates, but keeping the initial estimates of all

other parameters the same. The posterior intervals are much wider under this set of initial

estimates; the mean half-widths over age, within year, are between 0.02 and 0.06; a five- to

fifteen-fold increase on the log scale.

The wider intervals show that using the alternative initial estimates greatly increases

posterior uncertainty. In addition, for many of the older age groups, the posterior medians
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Figure 4. Prior and posterior medians and 95 percent Bayesian confidence intervals of the age-
specific log mortality rates for the reconstructed female population of Laos, 1985–2004. Prior
medians correspond to initial estimates which were calculated using the CD West model life
table.
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Figure 5. Prior and posterior medians and 95 percent Bayesian confidence intervals of age-
specific log mortality rates for the reconstructed female population of Laos, 1985–2004. Prior
medians correspond to initial estimates. Initial estimates and posterior distributions were cal-
culated using the UN South Asian model life table and the Brass two-parameter logit relational
model.
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are actually closer to the CD West initial point estimates than those used to fit the model.

This suggests that the initial estimates based on the CD West life tables are much more

consistent with the intercensal changes in population counts, given the initial estimates

for the other parameters, and that they should be preferred over the UNSA-derived initial

estimates.

Looking at e0 in Figure 6 leads to the same conclusion. Again, uncertainty is much

greater under the alternative set of initial estimates (cf. Figure 3c). The posterior distribu-

tion has shifted away from the initial estimates used to fit the model toward those derived

from the CD West model life table. In fact, all CD West initial point estimates are contained

within the 95 percent posterior interval based on the alternative estimates while this is not

the case for the initial estimates used to fit the model.

50

55

60

65

70

75

●

●

●

●

●

●

●

●

1985 1990 1995 2000
5−year period

e_
0 

(y
ea

rs
)

Legend

●

●

init. est.

posterior

Figure 6. Initial and posterior estimates of e0 for Laos females, 1985–2000, using Brass two-
parameter logit model and the UN South East Asia model life table. This figure summarizes the
same results shown in Figure 5.

We emphasize that our preferred set of initial estimates are those generated using the
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CD West standard. Our purpose here is not to advocate for the UNSA standard, or the

Brass two-parameter logit model, but to present an alternative, plausible set of initial es-

timates which we can use to generate an alternative set of posterior estimates for use in a

comparative analysis.

DISCUSSION

In this article we have demonstrated and extended the method of reconstructing past,

national-level population structures introduced by Wheldon et al. (2012, to appear). This

method embeds the standard CCMPP in a hierarchical statistical model which takes initial

estimates of vital rates and population counts as inputs, together with expert opinion about

their relative error (informed by data if available). International migration is handled in

the same way as the other inputs, and yields fully probabilistic interval estimates for all of

the inputs. The approach is Bayesian as the initial estimates serve as informative, but not

restrictive, priors for population counts through the CCMPP, which are then updated using

available census data over the period of reconstruction. Reconstruction can be undertaken

for any period for which estimates of baseline population, vital rates and international mi-

gration are available. However, reconstruction beyond the year of the most recent census

will be based on the initial estimates alone.

We presented 95 percent Bayesian confidence intervals for the marginal distributions

of TFR, total net number of migrants, e0 and under-five mortality. Ninety-five percent in-

tervals cover the range of most likely values. Results for TFR and age-specific fertility for

Laos showed that the posterior intervals are not constrained to lie inside prior intervals,

nor are they necessarily more narrow than prior intervals. Our posterior estimates of TFR

for Laos and Sri Lanka suggested that, in some years, the initial estimates based mainly on

surveys were inconsistent with intercensal changes in the number of births and Bayesian

reconstruction was able to provide an appropriate correction.
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We showed that the method works well when applied to different countries spanning a

wide range of data quality characteristics. For Laos, all mortality data are for ages five and

below and come from surveys, while New Zealand has complete period life tables based on

vital registration. Sri Lanka and Burkina Faso (analyzed in Wheldon et al., 2012, to appear)

lie between these extremes. The posterior intervals for New Zealand were much more nar-

row than those for Sri Lanka and Laos, reflecting the greater accuracy and coverage of the

New Zealand data. The greatest value of Bayesian reconstruction is likely to be for those

countries without well-resourced statistical systems. Roughly half of all the countries and

areas included in the WPP fall into this category (UN, 2011a).

The method as described in Wheldon et al. (2012, to appear) was limited by the fact that

it required census data at regular intervals. Here, we have relaxed this requirement by

showing that linearly interpolating census counts on the growth rate scale produces good

results.

We have also shown how Bayesian reconstruction might be used to help choose between

two sets of initial mortality estimates. We compared the posterior distributions of age-

specific mortality rates for Laos derived from initial estimates based on the CD West model

life table and the Brass two-parameter relational logit with the UNSA model life table. In

the latter case, the interval widths were much greater. This implies that the CD West based

initial estimates agree much more closely with the data on fertility, mortality and population

counts and they should be preferred.

Bias and measurement error variance are handled separately under Bayesian recon-

struction. Existing demographic techniques, such as indirect estimation via P/F ratios and

model life tables, are used to reduce bias in initial point estimates based on raw data col-

lected from surveys, vital registration and censuses. The nature of bias varies greatly across

parameters, time and country, hence we do not propose a general purpose method to replace

the many existing techniques. Instead, the analyst is able to select the most appropriate

technique for the data at hand. Measurement error variance is accounted for through the
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standard deviations of the initial point estimates. Expert opinion is used a priori to set

reasonable ranges for measurement error uncertainty.

To ensure that uncertainty is not underestimated, census data should not be used to

derive initial point estimates of vital rates and migration. If no reliable migration data are

available, the default initial point estimates should be centered at zero with a large elicited

relative error.

Bayesian reconstruction was developed and demonstrated for female-only populations

and our immediate goal is to extend the method to two-sex populations. We anticipate

that focusing on a two-sex extension separately will allow us to more carefully consider the

dependencies between female- and male-specific parameters. A further potential refinement

is to use single-year age groups and time periods.

A great deal of attention has already been directed at the estimation of uncertainty in

demographic forecasts, as opposed to estimates about the past which we focus upon here.

The study of stochastic models for forecasting dates back to at least Pollard (1966) and Sykes

(1969). Further developments are reviewed by Booth (2006) with more recent additions in

Hyndman and Booth (2008), Scherbov, Lutz, and Sanderson (2011) and Alkema, Raftery,

Gerland, Clark, Pelletier, et al. (2011). One component of error in forecasts of population

size is the error in estimates of population size and the vital rates prevailing at the jump-off

time. While the ergodic theorems of Demography (Lotka & Sharpe, 1911; Lopez, 1961) imply

that these become irrelevant if one forecasts far enough into the future, short term forecasts

can be significantly affected (e.g., Keilman, 1998; National Research Council, Commission

on Behavioral and Social Sciences and Education, 2000). It is possible, then, that Bayesian

reconstructions could contribute to improved forecasting methods by providing important

information about the uncertainty in estimates of jump-off populations.

The fact that official statistical estimates are not perfect is undisputed. The UNPD ac-

knowledges this both explicitly (UN, 2011a) and implicitly in the fact that the WPP are

revised biannually as new sources of data become available and methods are improved.
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Therefore, augmenting point estimates with quantitative estimates of their uncertainty is

an important contribution. For many countries, the available data are fragmented and sub-

ject to bias and measurement error, thus the expert opinions of demographers are very valu-

able. A Bayesian approach is especially appropriate since this can be used in conjunction

with the available data in a statistically coherent manner.
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