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Abstract

Respondent-Driven Sampling (RDS) is an approach to sampling design and infer-

ence in hard-to-reach human populations. Typically, a sampling frame is not avail-

able, and population members are difficult to identify or recruit from broader sam-

pling frames. Common examples include injecting drug users, men who have sex

with men, and female sex workers. Most analysis of RDS data has focused on esti-

mating aggregate characteristics, such as disease prevalence. However, RDS is often

conducted in settings where the population size is unknown and of great independent

interest. This paper presents an approach to estimating the size of a target population

based on data collected through RDS.

The proposed approach uses a successive sampling approximation to RDS to lever-

age information in the ordered sequence of observed personal network sizes. The in-

ference uses the Bayesian framework, allowing for the incorporation of prior knowl-

edge. A flexible class of priors for the population size is proposed that aids elicitation.

An extensive simulation study provides insight into the performance of the method

for estimating population size under a broad range of conditions. A further study

shows the approach also improves estimation of aggregate characteristics. A partic-

ular choice of the prior produces interval estimates with good frequentist properties.

Finally, the method demonstrates sensible results when used to estimate the numbers

of sub-populations most at risk for HIV in two cities in El Salvador.
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1. INTRODUCTION TO RESPONDENT-DRIVEN SAMPLING

Respondent-Driven Sampling (RDS, introduced by Heckathorn 1997) is an approach to

sampling from hard-to-reach human populations in the interest of conducting statistical

inference, typically on population proportions. In such hard-to-reach populations, a sam-

pling frame for the target population is not available, and members are difficult to identify

or recruit from broader sampling frames. In public health, RDS is often used in studies

of high-risk populations such as injecting drug users, men who have sex with men, and

female sex workers; 128 of these studies are summarized in Johnston et al. (2008). RDS

has also been used in other populations such as jazz musicians (Heckathorn and Jeffri

2001) and unregulated workers (Bernhardt et al. 2006).

RDS is a form of link-tracing network sampling, in which subsequent sample members

are selected from among the social relations of current sample members. Unlike most

link-tracing designs, respondent-driven sampling relies on study respondents to choose

which of their contacts will be sampled next. Each respondent is given a small number of

uniquely identified coupons to distribute among their contacts in the target population.

Contacts receiving coupons become eligible for the study.

Most existing estimators from RDS data attempt to estimate population proportions

(Heckathorn 1997; Heckathorn 2002; Salganik and Heckathorn 2004; Volz and Heckathorn

2008; Gile 2011; Gile and Handcock 2011). Population size estimation based on RDS data

is also of interest for three reasons: First, these data are often collected in precisely the

populations in which there is interest in population size. In fact, RDS-based prevalence

estimates are often used in the Estimation and Projection Package (EPP) model used by

UNAIDS (UNAIDS 2009). For concentrated epidemics, EPP estimates national HIV rates

based on both prevalence and population size estimates for several high-risk populations.

The resulting estimates of the numbers of infections are used in decisions about resource

allocation, research design and intervention planning (UNAIDS and World Health Orga-

nization 2010). Second, new prevalence estimators for RDS (Gile 2011; Gile and Handcock

2011) require estimates of the size of the population. And finally, because the information
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in the sequence of RDS samples has not yet been exploited to estimate population size,

this approach introduces a new source of information on the size of the hard-to-reach

population.

There are many approaches to estimating the size of a hard-to-reach human popula-

tion (UNAIDS and World Health Organization 2010; Bao, Raftery, and Reddy 2010; Paz-

Bailey et al. 2011; Berchenko and Frost 2011), including a few that use link-tracing samples

similar to RDS (Frank and Snijders 1994; Felix-Medina and Thompson 2004). The validity

of these approaches typically rests on strong assumptions about the populations and ad-

herence to sampling designs. A common approach is to use capture-recapture sampling

(Fienberg, Johnson, and Junker 1999; Paz-Bailey et al. 2011; Rocchetti, Bunge, and Böhn-

ing 2011), which estimates population size based on the overlap between two or more

captures of population members. Related approaches include the (network) scale-up or

multiplier methods. In these, the captures may not be based on a sampling design but

may be from enumerations or convenience samples. The accuracy of multiplier methods

varies with the quality of the captures data (UNAIDS and World Health Organization

2010; Salganik et al. 2011). In particular, Fienberg, Johnson, and Junker (1999) present a

general approach to population size estimation using multiple-recapture data and de-

velop a sophisticated Bayesian estimation approach for it. Because they are based on

multiple captures, to date, all methods that use RDS data require additional data col-

lected by mechanisms other than RDS (Johnston et al. 2011; Bernard et al. 2010; Niccolai

et al. 2010; Salganik et al. 2011). The primary contribution of this paper is to introduce

an estimator of population size based solely on RDS data. This approach is also novel

in that the population size estimates are based on information in the sample sequences,

exploiting the dependence in the sampling process. In contrast, most inference from sam-

pled data relies directly on the sampled values and treats dependence in the sample as a

nuisance. The proposed estimator can also be combined with estimates based on other

approaches to produce improved inference about the population size.

The proposed approach is founded on the successive sampling approximation to the
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RDS process introduced in Gile (2011). It extends the approach developed by West (1996)

for ecological applications (e.g., estimating the number of oil fields based on the sizes of

the known fields). Under successive sampling, larger units tend to be sampled earlier.

This approach therefore leverages the information in the decreasing size of sampled units

(a function of oil reserve magnitude for West’s application, and social connectedness for

RDS) over time to make inference about population size. Like West, it uses a super-

population model-based formulation within a Bayesian inferential framework by positing

a prior distribution over population size. It differs from that of West in three key ways:

First, the unit sizes are modeled as discrete rather than continuous. Second, the branching

and network nature of the RDS sample may reduce or confound the information in the

ordering of the sample. Third, the sample sizes of RDS samples are typically larger, and

with a different range of unit sizes than in the data available in ecological applications

such as oil fields.

The next section (Section 2) develops the inferential framework and a flexible class of

priors for the population size. In Section 3, a simulation study illustrates the frequen-

tist performance of the population size estimator derived from the Bayesian framework,

as well as the performance of a prevalence estimator based on this estimator. Section

4 applies the proposed method to data collected on two most-at-risk populations in El

Salvador. Section 5 concludes the paper with a broader discussion.

2. BAYESIAN INFERENCE FOR THE POPULATION SIZE

The goal here is to make inference for population size N . The approach taken is Bayesian,

treating N as an unknown parameter. This requires a probability model for the observed

data given N , as well as a prior for N . Most information about the population size is

drawn from the pattern in the sampling process. In particular, this sampling model is

non-amenable to the model (Handcock and Gile 2010). For this reason, the probability

model must represent both the sampling structure, and a superpopulation model.

The distribution of the sampling process of the units is modeled as a function of their
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unit sizes. The sampling model, described in Section 2.2 below, follows Gile (2011) and is

based on a successive sampling approximation to the RDS process. The super-population

model for these unit sizes is given in Section 2.5. A likelihood function for N can be

computed from these two models and then combined with a prior to make inference for

N .

The inferential frame is described as follows: Section 2.1 introduces the form of the

likelihood. Section 2.2 adds the particular form of the sampling distribution based on

successive sampling. Section 2.3 introduces the Bayesian frame for inference for the pa-

rameter of the unit size distribution, which is extended in Section 2.4 to inference for N .

Section 2.5 presents the parametric model for the unit size distribution. Finally, Section

2.6 presents the forms of the prior distributions for the super-population model and the

population size.

2.1 Likelihood for the Super-population Parameter

Consider a population of N units, denoted by indices 1, . . . , N with an associated vari-

able unit size represented by U1, U2, . . . , UN . For RDS, unit sizes are often the numbers of

network connections, also known as personal network sizes or degrees, but they can be

any function of individual unit variables. The unit sizes are treated as an i.i.d. sample of

size N generated from a super-population model based on some (unknown) distribution.

For simplicity of presentation, the unit sizes are presumed to have the natural numbers

as their support (e.g., degrees). Specifically: Ui
i.i.d.∼ f(·|η) where f(·|η) is a probability mass

function (PMF) with support 1, . . . , and η is a parameter.

Consider first a general ordered sampling design. The indices of the sequentially

sampled units identify the order of the sample, denoted by the random vector G =

(G1, . . . , Gn), where realized values g = (g1, . . . , gn) represent the observed indices of the

successively sampled units. Let \g = {1, . . . , N}\{g1, . . . , gn} represent the set of indices

of the unobserved population units. Further, consider the observed and unobserved unit

sizes. Let Uobs = {Ug1 , Ug2 , . . . , Ugn}, the random vector of observed unit sizes, with values
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uobs = (ug1 , . . . , ugn). Similarly, let Uunobs = {Ui}i∈\g and uunobs = {ui}i∈\g represent the ran-

dom and realized values of the unit sizes of the unobserved units. Thus the full observed

data are {g, uobs}.

Inference for η should be based on all the available observed data including the sam-

pling sequence information. The likelihood is any function of η proportional to p(G,Uobs|η):

L[η|Uobs = uobs, G = g] ∝ p(G = g, Uobs = uobs|η)

=
∑

uunobs∈U(uobs)

p(G = g, U = (uobs, uunobs)|η)

=
∑

uunobs∈U(uobs)

p(G = g|U = (uobs, uunobs))
n∏
j=1

f(ugj |η) ·
∏
j∈\g

f(uj|η), (1)

where U(uobs) is the set of possible uunobs given uobs, that is the unit sizes possible for the

remaining N − n units given that the first n sampled were uobs. Typically, this will be the

N − n product support of f(·|η). Thus the correct model is related to the complete data

model through the sampling design as well as the super-population model.

2.2 Likelihood Under Successive Sampling

Following Gile (2011), the RDS sampling is approximated as a successive sampling pro-

cess. Gile argues that this model approximates a without-replacement random walk on

the network, and demonstrates that using this model can reduce finite population biases

for RDS estimates of population characteristics. This sampling scheme is also known as

probability proportional to size without replacement (PPSWOR) sampling, and is treated in the

survey sampling and ecological literature (Andreatta and Kaufman 1986; Nair and Wang

1989; Bickel, Nair, and Wang 1992). The Successive Sampling (SS) sampling procedure is

defined as follows:

• Sample the first unit from the full population {1, . . . , N} with probability propor-

tional to unit size ui, i = 1, . . . , N : p(G1 = k) = uk/
∑N

j=1 uj, k = 1, . . . , N.

• Select each subsequent unit with probability proportional to unit size from among the
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remaining units, such that

p(Gi = k|G1 = g1, . . . , Gi−1 = gi−1) =


uk∑

j /∈{g1,...,gi−1}
uj

k /∈ {g1, . . . , gi−1}

0 otherwise
, i = 2, . . . , n.

(2)

The probability of the observed sequence g for a given population of unit sizes is:

p(G = g|U = (uobs, uunobs)) =
N !

(N − n)!

n∏
k=1

ugk
rk

where

rk =
N∑
i=1

ui −
k−1∑
j=1

ugj k = 1, . . . , n, (3)

so that the full likelihood is:

L[η|Uobs = uobs, G = g] ∝ p(G = g, Uobs = uobs|η) (4)

=
N !

(N − n)!

∑
uunobs∈U(uobs)

n∏
k=1

ugk
rk
·
n∏
j=1

f(ugj |η) ·
∏
j∈\g

f(uj|η).

This likelihood can be the basis of maximum likelihood estimation for η. In general, this

sum will be very difficult to compute because of the N−n embedded sums over typically

infinite supports of f(·|η).

Note that this likelihood involves models for both the sampling design and the super-

population, necessary because the design is not amenable to the model (See the Sup-

plementary Materials for details). Intuitively, ignoring the sampling distribution would

likely result in positive bias in inference about unit sizes as the larger-sized units will tend

to be sampled first.

2.3 Bayesian Inference for the Unit Size Distribution

This section develops inference for the unit size distribution, conditional on known N . In

this case, the posterior is:

p(η|G = g, Uobs = uobs) ∝ π(η)·L[η|Uobs = uobs, G = g],

where π(η) is a prior for the unit size distribution parameter. For simplicity of notation,

denote the observed data by D = (Uobs = uobs, G = g).
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Because of the complexity of computing the likelihood (4), West (1996) suggests using

the relatively simple

p(G = gobs, Uobs = uobs, Uunobs = uunobs|η) =
N !

(N − n)!

n∏
k=1

ugk
rk
·
n∏
j=1

f(ugj |η) ·
∏
j∈\g

f(uj|η) (5)

and a two component Gibbs sampler with p(η|D,Uunobs = uunobs) and p(Uunobs = uunobs|η,D).

The current paper uses a variant of this approach for discrete unit size distributions.

From (5),

p(Uunobs = uunobs|η,D) ∝
n∏
k=1

1

rk
·
∏
j∈\g

f(uj|η). (6)

As the rk are hard to deal with, West (1996) notes that,
1

rk
=

∫ ∞
0

e−rkψkdψk,

where ψk has exponential distribution with rate parameter rk. That is,

p(ψk = ψ|η, Uunobs = uunobs, D) = rkexp(−rkψ) ψ > 0, (7)

He augments the data with Ψ = (ψ1, . . . , ψn) where the components are drawn (condi-

tionally) independently so that

p(Uunobs = uunobs,Ψ|η,D) = p(Ψ = ψ|η, Uunobs = uunobs, D) · p(Uunobs = uunobs|η,D)

∝
n∏
j=1

e−rjψj ·
∏
j=∈\g

f(uj|η)

and from (3),

p(Uunobs = uunobs|Ψ, η,D) ∝ p(Ψ = ψ|η, Uunobs = uunobs, D) · p(Uunobs = uunobs|η,D)

∝
n∏
i=1

e−ψi
∑

j=∈\g uj ·
n∏
i=1

e−ψi
∑n

j=i ugj ·
∏
j=∈\g

f(uj|η)

∝
∏
j∈\g

e−uj
∑n

i=1 ψif(uj|η). (8)

Hence the elements of Uunobs are conditionally an i.i.d. sample from the unnormalized

PMF e−u
∑n

i=1 ψif(u|η), and are, in fact, conditionally independent of D.

The augmented posterior:

p(η, Uunobs = uunobs,Ψ|D) (9)

can then be easily computed via a three component Gibbs sampler. Details of this and an
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explicit statement of the MCMC algorithm are given in the Supplementary Materials.

The algorithm produces samples from p(η|D) and from the posterior predictive distri-

bution for the unobserved unit sizes: p(Uunobs = uunobs|D). These in turn enable inference

for such quantities as the mean unit size, the unit size distribution, etc.

2.4 Estimating the Size of the Hidden Population

When N is unknown, it becomes an additional parameter to be estimated. For simplicity,

specify that N and η are a priori independent so that π(N, η) = π(N)·π(η). A variant of

the approach in the last section allows draws from the joint posterior

p(N, η, Uunobs = uunobs|D). (10)

This change requires p(N, η,Ψ|D). Using (5) and (7),

p(D,Uunobs = uunobs|N,Ψ, η) (11)

∝ p(Ψ = ψ|N, η,D, Uunobs = uunobs) · p(D,Uunobs = uunobs|N, η)

∝ N !

(N − n)!
·
n∏
i=1

ugjf(ugi|η)
n∏
i=1

e−ψi
∑

j=∈\g uj ·
n∏
i=1

e−ψi
∑n

j=i ugj ·
∏
j=∈\g

f(uj|η)

∝ N !

(N − n)!
·
n∏
i=1

ugjf(ugi|η)e−ψi
∑n

j=i ugj
∏
j∈\g

e−uj
∑n

i=1 ψif(uj|η). (12)

The full-conditional for N is

p(N |η,Ψ, D) ∝ π(N)p(D|N, η,Ψ) = π(N)
∑

uunobs∈U(uobs)

p(D,Uunobs = uunobs|N,Ψ, η)

∝ N !

(N − n)!
· π(N)

∑
uunobs∈U(uobs)

∏
j∈\g

e−uj
∑n

i=1 ψif(uj|η)


∝ N !

(N − n)!
· π(N)

N∏
j=n+1


∞∑
vj=1

e−vj
∑n

i=1 ψif(vj|η)


∝ N !

(N −m)!
· π(N)

[
γ(

n∑
i=1

ψi, η)

]N−n
, where γ(α, η) =

∞∑
j=1

e−αjf(j|η). (13)

The other full-conditionals are unchanged. This leads to a four component Gibbs sampler,

the details of which are given in the Supplementary Materials. The algorithm can be run

to produce a large sample from the augmented posterior: p(N, η, Uunobs = uunobs,Ψ|D).
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This can then be marginalized to produce samples from p(N |D), p(η|D), and the pos-

terior predictive distribution of the unobserved unit sizes, p(Uunobs = uunobs|D). Hence

it produces posterior predictive distributions of the full population of unit sizes (ui, i =

1, . . . , N). These posteriors enable inference for such quantities as the population size, the

mean unit size, the unit size distribution, etc.

2.5 Models for the Unit Size Distribution

This approach is general with respect to the parametric distribution of unit sizes, and

several parameterizations are included in the software (Handcock 2011). The question

of models for the degree distributions of social networks has been extensively studied.

Discussion of the many alternative distributional families is given in the Supplemental

Materials. Throughout the study of the synthetic populations and application to real

data the Conway-Maxwell-Poisson distribution for the unit sizes is used. It allows both

under-dispersion and over dispersion with a single additional parameter over a Poisson

(Shmueli et al. 2005).

2.6 Prior specification

Prior for the unit size distribution model Each two-parameter unit size distribution, in-

cluding the Conway-Maxwell-Poisson, can be parameterized in terms of its mean and

standard deviation. The prior for the mean given the standard deviation is normal and

the variance is scaled inverse Chi-squared:

µ|σ ∼ N(µ0, σ/dfmean) σ ∼ Invχ(σ0; dfsigma).

The default prior on these parameters is close to uninformative, equivalent sample size

of dfmean = 1 for the mean of the unit size distribution and dfsigma = 5 for the variance of

the unit size distribution.

Prior for the population size The model allows for an arbitrary prior distribution over

the population size (N ). However, this is an opportunity to choose priors that aid elicita-

tion of expert prior information or easily incorporate previous or concomitant sources of
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information about the population size.

The most common parametric models for N (e.g., Negative Binomial) typically have

too thin tails for large N . This issue has been thought through by Fienberg, Johnson, and

Junker (1999). They suggest the prior:

π(N) = (N − l)!/N ! for n < N < Nmax, (14)

whereNmax covers the range where the likelihood is non-negligible. For their applications

they choose their Jeffrey’s prior l = 1, π(N) ∝ 1/N, n < N < Nmax. In addition to these

possibilities, we propose a new class of priors specifying knowledge about the sample

proportion (i.e. n/N ) as a Beta(α, β) distribution. The implied density function on N

(considered as a continuous variable) is:

π(N) = βn(N − n)β−1/Nα+β for N > n. (15)

The distribution has tail behavior O(1/Nα+1). Figure 1 presents three different versions

of this prior, corresponding to a prior mean, median and mode of 1000. We have found

this class of priors to be very useful: It is often relatively flat in regions where the likeli-

hood is centered. The long-right-tail allows large population sizes but the rate of decline

ameliorates this.

When α = l − 1 > 0, this class is similar to that of Fienberg, Johnson, and Junker

(1999). The Beta prior class, however, is directly motivated as a proper prior on the sample

proportion. Additional details on this prior are given in the Supplemental Materials.

3. A SIMULATION STUDY TO ASSESS FREQUENTIST PROPERTIES

The primary focus of the simulation study is to evaluate the frequentist performance of

the proposed estimator for population size, including point estimation, interval estima-

tion, and sensitivity to prior specification. Of secondary interest is the use of these esti-

mates to inform the estimation of population proportions using the estimator introduced

in Gile (2011).

The parameters of the study are largely chosen for consistency with the simulation
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Figure 1: Three example prior distributions for the population size (N ). They correspond
to α = 1 and β = 1.55, 1.16 and 3.

studies of RDS-based estimators of population proportions in Gile and Handcock (2010),

Gile (2011), and Tomas and Gile (2010), although with a greater range of population sizes.

As in these studies, to increase the realism of the study, parameters match the charac-

teristics of the pilot data from the CDC surveillance program (Abdul-Quader et al. 2006)

whenever possible. The general procedure is: (1) 200 Networks are simulated under each

test condition; (2) An RDS sample is simulated from each sampled network; (3) Point and

interval estimators of population size are computed from each sample.

For the simulation, all samples are of size 500, and the population mean degree is fixed

at 7. A discoverable class, referred to as \infection status," is assigned to each member of

the population such that each population has prevalence 20%.

The varying characteristics of the synthetic populations are also chosen to represent

those expected in the real world. These characteristics include population size (i.e., the

number of nodes), tendency for individuals to preferentially form relations with others of

the same infection status (known as homophily), and different rates of network connectiv-

ity by infection status (referred to as differential activity).

Population network structures are modeled using Exponential family Random Graph

Models (ERGM) (Snijders et al. 2006). That is, the N × N binary matrix of relations, y, is
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represented as a realization of the random variable Y with distribution:

Pη(Y = y|x) = exp{η·g(y, x)− κ(η, x)} y ∈ Y , (16)

where x are covariates, g(y, x) is a p-vector of network statistics, η ∈ Rp is the parameter

vector, Y is the set of all possible undirected graphs, and exp{κ(η, x)} =
∑

u∈Y exp{η·g(u, x)}

is the normalizing constant (Barndorff-Nielsen 1978).

This modeling framework can represent a very wide range of populations, with the

particular structures determined by the choice of g(y, x). Here, differential activity is

parameterized as the ratio, ω, of the mean degree of infected nodes to the mean degree

of uninfected nodes, where ω = 1 represents the absence of differential activity. While

homophily can and will occur on multiple variables, the most impactful type is that on

infection status. Homophily is parameterized, for fixed mean degree of each group, as

the ratio, α, of the expected number of discordant-infection-status ties absent homophily

to the expected number of discordant-infection-status ties with the homophily:

α =
E (number of infected-uninfected ties absent homophily)

E (number of infected-uninfected ties)
,

so that larger values of α indicate more homophily. This measure is meaningful across

different levels of differential activity. Note that this parameterization of homophily is

different from that in earlier studies (e.g. Gile and Handcock 2010).

These features are represented in the ERGM by choosing network statistics to repre-

sent the mean degree, the relative activity levels of the two groups, and homophily. The

binary nodal covariate xi represents infection status, such that xi = 1 indicates infection.

These three parameters then map to the expected cell counts of the mixing matrix on

infection status. Our networks are thus simulated from an ERGM with

g(x, y) = {
N∑
i=1

∑
j 6=i

xixjyij,

N∑
i=1

∑
j 6=i

xi(1− xj)yij,
N∑
i=1

∑
j 6=i

(1− xi)(1− xj)yij}.

The range of population characteristics modeled is (a) population size: N ∈ {5000, 1500,

1000, 750, 555}; (b) differential activity: ω ∈ {0.5, 1, 2}; and (c) homophily: α ∈ {1, 1.8}.

The η parameter of the ERGM is chosen so the expected values of the statistics are equal

to the values given above, and the simulated networks are generated from the resulting
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model, as in Duijn, Handcock, and Gile 2009. This was implemented using the R package

statnet (Handcock et al. 2003).

Ten seed nodes are chosen for each sample, selected (sequentially) with probability

proportional to degree. Subsequent sample waves are selected without-replacement by

sampling two nodes (where possible) at random from among the unsampled alters of

each sampled node. This typically resulted in four complete waves and part of a fifth

wave, stopping at sample size 500.

Throughout the simulations, unit sizes are modeled with a Conway-Maxwell-Poisson

distribution with diffuse priors (hyper parameters µ0 = 7, dfmean = 1, σ0 = 3, dfsigma = 5).

The prior for the population size is a Beta distribution with α = 1 as describe in (15).

Sensitivity of the method to incorrect priors is tested with priors based on three different

prior means: equal to the true population size, N , a high estimate equal to 2N , and a low

estimate halfway between N and the sample size n: (N + n)/2.

Results from each simulation are summarized using the posterior mean as a point

estimate, and the 95% highest posterior density region as an interval estimate.

3.1 Point and Interval Estimation of Population Size

Figure 2 summarizes population size estimates based on simple network structures with

no homophily (α = 1) or differential activity (ω = 1) for all five population sizes (cor-

responding to different sample fractions), and low, accurate, and high prior estimates of

population size.

When the prior is correct (blue lines), average point estimates are reasonably close

in all cases. There is a small amount of positive bias. This is because of the successive

sampling (SS) approximation to the true link-tracing network sampling process. In SS,

the next unit sampled would be chosen with probability proportional to unit size from

among all unsampled units. In RDS, the network structure constrains the selection of

each subsequent unit, with the effect that the decrease in sampled unit sizes over time is

less sharp than in successive sampling, leading to a slight positive bias in the population
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size estimates. The coverage rates of nominal 95% credible intervals are about right in the

case of accurate prior information.

Because there is limited information regarding population size in the RDS samples,

results are affected by the choice of prior mean, with greater impact for smaller sample

fractions. This is because smaller sample fractions entail less exhaustion of the target

population and therefore less information in the data about population size.

The coverage rates for the 95% HPD regions for cases of prior mis-specification range

from 83% to 100%, with higher coverage rates for higher prior means. These intervals can

be quite wide. Because of the lower bound induced by the sample size, interval width is

largely determined by the upper limits. The numbers above the bars in Figure 2 represent
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the median across each set of 200 simulations of the upper limit of the HPD intervals,

represented as a multiple of the true population size. When the population size is close

to the sample size, intervals are quite tight, while smaller sample fractions yield intervals

that are often very large, with median upper point 3.2 times the true population size for

N = 1500, and even wider (5.7 times) with higher prior mean of 3000.

3.2 Impact of Network Structure

Figure 3 summarizes the results of varying the levels of homophily and differential activ-

ity, for varying prior specifications, all for populations of size 1000. Each pair of columns

provides comparison across two levels of homophily (α). The paired columns are very

similar, in both point and interval estimates, and across all levels of differential activ-

ity. This suggests that under a broad range of circumstances, homophily does not have a

strong first-order impact.

There does appear, however, to be a first order impact of differential activity (ω = 0.5

and ω = 2), across levels of homophily. By systematically varying mean degree across

infection groups, differential activity increases the variation in the unit size distribution,

increasing the rate of decline in sampled unit sizes, and therefore providing more infor-

mation about population size, resulting in better point estimates. Note how the prior

mean 2000 cases have point estimates far closer to the truth when ω = 2 as compared to

ω = 1. The credible intervals (HPDU ratios) are also typically smaller for ω 6= 1 cases,

without substantial reduction in the coverage rates.

3.3 Estimation of Population Proportions

RDS is typically conducted in the interest of estimating population features such as pop-

ulation proportions. Earlier estimators based on RDS data assumed the population size

was very large with respect to the sample size, so that finite population effects could be

ignored. The more recent estimator which introduces the successive sampling (SS) ap-

proximation on which this paper is based (Gile 2011), however, includes a finite popula-

tion adjustment, but assumes that the population size is known. It is natural, therefore, to
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use the approach to population size estimation introduced in this paper to provide a pop-

ulation size estimate for use in the prevalence estimator in Gile (2011). Hence this section

considers estimates of infection prevalence using the SS estimator. This section compares

results using the prior mean as the population size to results using the posterior mean.

Figure 4 shows the SS results for the same simulation conditions as Figure 3. Absent

differential activity (Figure 4, middle 2 columns), there is little difference between results

using the prior and posterior means. This is because the SS estimator re-weights the

sample based on unit sizes (degrees) and the assumed population size. Absent differential

activity, the infected and uninfected subsamples will have similar degree distributions,

and therefore be similarly affected by any aberrations in the unit weights.

In the presence of differential activity, inaccurate population size estimates introduce

bias in the point estimates given by the successive sampling estimator (see Gile 2011). The
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first and last two columns of Figure 4 compare prevalence estimates based on the prior

and posterior means for cases with strong differential activity. Consistent with Gile (2011),

the dashed bars, corresponding to estimates using the prior mean, show substantial bias

when the population size is inaccurate. This is due to imperfect adjustment for finite

population effects. The primary advantage of estimates based on the posterior mean

is the reduction of this dramatic bias. The cost of this reduction, however, is increased

variance of the estimator, resulting in higher MSE in cases with small finite population

biases, such as when the prior mean is correct. Note that because the bootstrap standard

error estimator associated with the successive sampling estimator does not account for

uncertainty in the population size, coverage rates can be dramatically low, especially for

the estimator based on the prior mean.

4. APPLICATION: ESTIMATING THE NUMBERS OF THOSE MOST AT RISK

FOR HIV IN CITIES IN EL SALVADOR

Overall, El Salvador is a country with low HIV prevalence. As of 2010, the adult HIV

prevalence was estimated at 0.8% (UNAIDS/WHO 2010). However the virus remains a

significant threat in groups who practice high-risk behaviors, such as female sex workers

(FSW) and men who have sex with men (MSM) (Morales-Miranda, Paz-Bailey, Alvarez,

et al. 2007; Soto et al. 2007).

This section analyses two studies from data collected in 2010 as part of a series of RDS

studies of populations most at risk for HIV across major El Salvadorian cities (Paz-Bailey

et al. 2011).

The first case is a study of FSW in the department of Sonsonate, which had a popu-

lation of about 540,000 in 2008 (Guardado, Creswell, Monterroso, et al. 2010). This study

began with 5 seeds and continued until wave 9, with 11 samples from wave 8 and 5 from

wave 9, and a total of 184 samples. The average wave number was 3.8. A graph of the

recruitment is given in the Supplementary Materials.

As is typical in these settings, the number of female sex workers in Sonsonate is un-
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known. The public health officials use the UNAIDS national HIV estimation work group

recommendation to estimate the number of FSW based on a percent from the total adult

female population (UNAIDS/WHO 2003). In 2009, this group estimated that FSW consti-

tute 0.4%-0.8% of the urban female population 15-49 years of age (139,804) (Censos 2007;

Paz-Bailey et al. 2011). The range for Sonsonate is then 560 to 1120 FSW.

Estimates of the total number of FSW in Sonsonate are calculated with three different

priors. The first prior is constant over the range of population sizes where the likeli-

hood is non-negligible. Figure 5(a) plots both the prior and posterior distributions. The

peakedness of the posterior shape indicates that there is information in the data about the

population size, with a mode of around 1250 FSW. The UNAIDS guidelines (purple lines)
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Figure 5: Posterior distribution for the number of female sex workers in Sonsonate based
on three prior distributions for the population size: flat, matching the midpoint UNAIDS
estimate, and interval-matching the UNAIDS estimate. The prior is dashed. The red mark
is at the posterior median. The green mark is at the posterior mean. The blue lines are at
the lower and upper bounds of the 95% highest-probability-density interval. The purple
lines demark the lower and upper UNAIDS guidelines.

fall in the mid to low part of the posterior distribution, are broadly consistent with it, and

fall within the 95% HPD interval (blue lines).

The second prior places the prior mean at the mid-point of the UNAIDS suggested

range 0.6% × 139804 = 838. Figure 5(b) plots this prior and the resulting posterior. The

mean, median and mode of the posterior fall within the UNAIDS guidelines (purple lines)

and these guidelines fall within the the 95% HPD interval. As expected, this prior results

in more mass in the posterior in the area of the UNAIDS estimates.

As UNAIDS provides a range of values, it may be useful to specify a prior based on

multiple points in that range. The class of priors described by (15) allows the flexibility

to choose a prior that reflects a range of values. In this case, two parameters (α, β) are

chosen so that the prior mean is the midpoint of the range (0.6%) and the lower quartile

of the prior is the lower UNAIDS estimate (0.4%). Figure 5(c) plots this prior and resulting

posterior distribution. This distribution has a mode at about 1000 FSW, and a 95% HPD

interval from 481 to 1998 FSW.

The above analysis is now repeated for a study of MSM in San Miguel. In 2009,

the UNAIDS national HIV estimation work group estimated the number of MSM in
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Figure 6: Posterior distribution for the number of MSM in San Miguel based on three prior
distributions for the population size: flat, matching the midpoint UNAIDS estimate, and
interval-matching the UNAIDS estimate. The legend is the same as Figure 5.

El Salvador at 2%-5% of the urban male population 15-49 years of age (148,489) (UN-

AIDS/WHO 2003; Censos 2007; Paz-Bailey et al. 2011). The range for San Miguel is then

2970 to 7425 MSM.

Figure 6 shows the same three prior specifications as the previous case. Figure 6(a)

plots the posterior distribution and the prior when the prior is constant over the range of

population sizes where the likelihood is non-negligible. The peakedness of the posterior

shape again indicates that there is information in the data about the size, but it is diffuse

and has a long upper tail compared to that for the FSW. The UNAIDS guidelines (purple

lines) fall in the mid to upper part of the distribution, and are well within the 95% HPD

interval (blue lines).

Figure 6(b) plots the posterior distribution based on the prior with mean the mid-point

of the UNAIDS suggested value 3.5% × 148489 = 5197. The majority of the posterior is

below the UNAIDS estimates as the prior pulls in the larger values while the 95% interval

mostly covers them.

Figure 6(c) plots the posterior distribution based on the prior fixing the mean at the

midpoint of the range (3.5%) and the lower point (2%) at the lower quartile. This prior

contains the most information from the UNAIDS work group and hence is perhaps the

best choice. The resulting posterior distribution has a mode at about 2100 MSM, and a
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95% HPD interval from 200 to 7048 MSM. Thus this method yields an estimate of the

number of MSM in San Miguel with a wide interval.

Another reference point for population size estimates in El Salvadorian cities can be

extrapolated from the results of another study in San Salvador. In this study, capture-

recapture was used to estimate the number of MSM and FSW in San Salvador in 2008

(Paz-Bailey et al. 2011). This approach required the distribution of tokens (e.g., key chains)

throughout the population followed by a recapture step with a follow-up survey. Paz-

Bailey et al. (2011) estimate that the size of the FSW population in San Salvador is al-

most double the UNAIDS figures (1.4%). This population proportion in Sonsonate would

translate to 2079 FSW, close to the posterior mean of the proposed method for the flat

prior, but in the upper tail of the posteriors based on priors based on the UNAIDS guide-

lines. Paz-Bailey et al. (2011) estimate that the size of the MSM population in San Salvador

is close to the UNAIDS figures (3.4%). This is somewhat high but comparable to the MSM

results in Figure 6. Thus the results here are largely comparable to those of Paz-Bailey et

al. (2011) when they differ from the UNAIDS guidelines.

5. DISCUSSION

The primary contribution of this paper is a method to estimate population size from RDS

data alone. All existing methods require at least two data sources, and strong assump-

tions about their dependence structure. Intuitively, when unit sizes are associated with

sampling probability, a systematic decline in observed unit sizes over time is indicative

of the depletion of the available population. As described in this paper, a successive

sampling approximation to the RDS process leverages this change in observed sizes to

estimate the size of the hidden population. These data were previously unexploited in

the estimation of the size of hard-to-reach human populations. Because RDS is designed

for inference in hard-to-reach populations, such data often exist in precisely the popula-

tions where population size is unknown but of great interest. Thus this method provides

additional important information, that is, an estimate of population size, at no extra cost.
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Furthermore, the Bayesian framework of this work allows for easy incorporation of infor-

mative prior information or data from other sources.

The main limitation of the proposed method is the small amount of information on

population size available in many RDS samples, with less information available in smaller

sample fractions. In cases with little information, this method results in very large inter-

val estimates in order to obtain reasonable frequentist coverage properties. However,

existing methods are also subject to great uncertainty, even though they typically require

additional data collection. Often these methods lead to apparently conflicting results be-

cause they poorly estimate measures of uncertainty (Salganik et al. 2011). The advantage

of the proposed method is that it uses existing data and accurately assesses the degree of

uncertainty in N over a wide range of practical situations. Results from the two cases in

El Salvador provide estimates compatible with UNAIDS guideline estimates as well as

capture/recapture estimates of population sizes.

This method is also useful for estimators of population characteristics that require an

estimate of the population size. The simulation study demonstrates that using popula-

tion size estimates from the proposed method in the SS estimator (Gile 2011) works well

and is particularly helpful in conditions of strong differential activity and larger sample

fractions.

The framework developed in this paper is designed to be a foundation upon which

other approaches to population size estimation can build. In particular it is designed

to facilitate combination with data from multiple methods (e.g., direct surveys, capture-

recapture, network scale-up and multiplier). The posterior from the approach in this

paper can be used as a prior for combination with information from these alternative

methods. Thus this methodology will lead to coherent inference that can be incrementally

improved in a constructive way.

While the methods in this paper have been applied to data collected via RDS, we note

that the approach is general and applies to data collected via successive sampling. Hence

the method has broad applicability (Andreatta and Kaufman 1986; Nair and Wang 1989;
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Bickel, Nair, and Wang 1992).

The R package implementing the methods developed in this paper (Handcock 2011)

will be available on CRAN (R Development Core Team 2011).

6. SUPPLEMENTARY MATERIALS

Inferential and Computation: This supplement presents specifics of the estimation al-

gorithms, variations of models for the unit size distribution, a proof of the non-

amenability of RDS, and the recruitment graph for the study of female sex workers

in El Salvador (RDSSizesupplement.pdf).
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