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Abstract

The United Nations (UN) Population Division is considering producing probabilistic projec-

tions for the total fertility rate (TFR) using the Bayesian hierarchical model of Alkema et al.

(2011), which produces predictive distributions of TFR for individual countries. The UN is in-

terested in publishing probabilistic projections for aggregates of countries, such as regions and

trading blocs. This requires joint probabilistic projections of future country-specific TFRs,

taking account of the correlations between them. We propose an extension of the Bayesian

hierarchical model that allows for probabilistic projection of TFR for any set of countries.

We model the correlation between country forecast errors as a linear function of time invari-

ant covariates, namely whether the countries are contiguous, whether they had a common

colonizer after 1945, and whether they are in the same UN region. The resulting correlation

model is incorporated into the Bayesian hierarchical model’s error distribution. We produce

predictive distributions of TFR for 1990-2010 for each of the UN’s primary regions. We find

that the proportions of the observed values that fall within the prediction intervals from our

method are closer to their nominal levels than those produced by the current model. Our

results suggest that a significant proportion of the correlation between forecast errors for TFR

in different countries is due to countries’ geographic proximity to one another, and that if this

correlation is accounted for, the quality of probabilitistic projections of TFR for regions and

other aggregates is improved.



1 Introduction

The United Nations (UN) Population Division produces population estimates and projections

every two years for all countries and publishes them in the biennial World Population Prospects

(WPP). These projections are used by UN agencies and governments for planning, monitoring

development goals and as inputs to climate change and other models. They are also widely

used by social and health science researchers and the private sector. The UN produces these

population forecasts by projecting countries’ age- and sex-specific fertility, mortality, and

migration rates, and combining them to obtain age- and sex-specific population sizes using

the standard cohort component method.

In this paper, we focus on the fertility component. Country fertility in a given time period

is summarized by the period total fertility rate (TFR), which is the average number of children

a woman would bear if she lived past the end of the reproductive age span and at each age

experienced the age-specific fertility rates of the given country and time period. Projections of

future TFR are decomposed using forecasted age schedules to obtain projections of age-specific

fertility rates.

The WPP reports three projection variants (low, medium, and high) for the population

and vital rates based on expert opinion and models of historical patterns. The low and high

variants correspond to TFR half a child below and above the medium value, respectively. A

drawback of these projections is that the range given by the low and high variants has no

probabilistic interpretation and hence does not reflect the uncertainty in the forecasts.

For the 2010 WPP (United Nations, Department of Economic and Social Affairs, Popula-

tion Division, 2011), the UN used as its medium projection the predictive median of TFR from

a Bayesian hierarchical model developed by Alkema et al. (2011). We refer to this model as

the “current model”. This model produces predictive probability distributions of each coun-

try’s TFR, although the distributions were not used in the 2010 WPP. The model is based

on the demographic transition, where countries move from high birth and death rates to low

birth and death rates, and is composed of three phases: before, during and after the fertility

transition. Predictions from this model are typically summarized by the median country TFR

prediction and the 80% or 95% prediction interval.

In addition to producing population estimates at the country level, the UN also provides

projections for country aggregates such as geographic regions and trading blocs. The country

TFR projections from the current Bayesian hierarchical model of Alkema et al. (2011) can be

combined to obtain regional probabilistic TFR projections, provided the current model takes
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Figure 1: Primary regions of the world as identified by the UN.

account of the dependence between countries’ fertility rates. However, if dependence exists

between country TFRs that is not accounted for in the Bayesian hierarchical model, treating

the country-specific projections as independent may underestimate the uncertainty about the

future TFRs and populations of aggregates.

Figure 1 shows the UN’s 22 primary regions of the world and Table 1 summarizes the

coverage probability of the out-of-sample TFR prediction intervals for these regions based on

the current model. The coverage probabilities of the region-specific predictive intervals are

smaller than the nominal levels, even though the country-specific coverages have been found

to be approximately correct (Alkema et al., 2011). This suggests that the assumption of

independent forecast errors may not be appropriate.

Table 1: Proportion of observed regional TFRs that fall within the specified out-of-sample
prediction intervals obtained from the current Bayesian hierarchical model of Alkema et al.
(2011).

Time Period 80% CI 90% CI 95% CI

1990-1995 0.73 0.86 0.95
1995-2000 0.68 0.73 0.86
2000-2005 0.59 0.73 0.82
2005-2010 0.73 0.82 0.91

All 0.68 0.78 0.89
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In this article, we propose an extension to the Bayesian hierarchical model that produces

TFR estimates for any aggregate of countries by modeling the residual correlation between

country TFRs. Our extension adds a correlation structure to the error distribution in the

hierarchical model, where the correlation between a pair of countries is modeled as a linear

function of time invariant covariates. Three covariates are chosen: whether two countries

are contiguous, whether they had a common colonizer after 1945, and whether they are in

the same UN region. This model provides estimates of the correlation between any pair of

countries, even when empirical estimates are not available.

Correlation matrices based on the linear function of covariates in our extension are not

positive semidefinite, and hence are not valid for prediction, for many values of the covariate

coefficients. This makes estimation of the covariate coefficients difficult. In addition, while

simulation of forecast errors from a correlation matrix requires only that the matrix be positive

semidefinite (and so may be singular), traditional estimation procedures such as maximum

likelihood estimation do not accommodate singular covariance matrices. Thus, such estimation

methods are unsatisfactory for this problem. We propose instead estimating the coefficients

by maximizing a pseudo-likelihood function defined by the country pairwise correlations.

This paper is organized as follows. In the next section we review the current model and

introduce the correlation model extension. We also describe the exploratory analyses that

led to the choice of model extension. An estimation procedure based on a pseudo-likelihood

function is described, and model validation results are then presented for the prediction of the

TFR in each of the UN’s regions. We show theoretically which regional prediction intervals are

most affected by the correlation model and compare the pairwise country correlation values

from our model and those obtained in previous studies. We conclude with a discussion of

previous work.

2 Methodology

2.1 Current Model

The Bayesian hierarchical model of Alkema et al. (2011) divides the evolution of TFR in a

country into three phases: before, during and after the fertility transition. During the fertility

transition, the TFR for country c in time period t, fc,t, is modeled as following a systematic

decline curve with normally distributed random errors. After the fertility transition is com-

plete, the TFR is modeled as a first order autoregressive process that ultimately fluctuates
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about 2.1, which is considered replacement level fertility. If ft = (f1,t, ...., fC,t) is the TFR for

all countries at time t, the model can be written as follows:

ft = mt + εt, εt ∼ N(0,Σt = σ̃T
t σ̃t) (1)

Fertility transition phase:

mc,t = fc,t−1 − d(θc, fc,t−1)

σ̃c,t = σc,t(θc, fc,t−1)

Post-transition phase:

mc,t = 2.1 + 0.9(fc,t−1 − 2.1)

σ̃c,t = s = 0.2

In (1), the quantities in bold font are vectors whose elements correspond to different

countries, d(θc, fc,t−1) is a double logistic function controlling the rate of the fertility decline,

and θc is a vector of country-specific parameters. The expected TFR in the next time period,

mc,t, and the variances of the random errors, σ̃2
c,t, differ in the transition and post-transition

phases. Since a country’s TFR is not modeled before the fertility decline, the vector ft for

any time point t contains only those countries that have started or completed their fertility

transition.

The data used to estimate the country parameters θc in the current model are the five-year

time period TFR estimates from 1950 to 2010 in the 2010 WPP. A posterior distribution of

the parameters is produced which indicates the probable values of the parameters given the

data. In addition, a predictive distribution of TFR values for each country can be obtained by

forecasting future values using the relations in (1). Figure 2 shows the predictive distribution

of TFR for Egypt from 2010 to 2050. This distribution is summarized by the median prediction

and the 80%, 90%, and 95% prediction intervals.

2.2 Correlation Model

As discussed above, the regional TFR prediction intervals from the current model tend to be

too narrow (see Table 1). This suggests there is excess correlation between countries’ TFRs

that is not accounted for in the current model. To capture this excess correlation, we propose

modifying the error structure in (1) to allow for correlation between countries as follows:

εt ∼ N(0,Σt = σ̃T
t Rtσ̃t). (2)

The (i, j) element of the matrix Rt is the correlation between the TFR forecast errors (i.e.

deviations from the mean predicted values mc,t) for country i and country j in time period t.
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Figure 2: The plot shows TFR projections (grey) and probabilistic prediction intervals for
Egypt from 2010 to 2050 from the Bayesian hierarchical model.

Our exploratory analyses, described below, indicated that the correlations had a different

pattern when both countries had low fertility than otherwise, and our model allows for this. We

sought to model the correlations using temporally stable characteristics of the country pairs,

so that they could reasonably be used for projections. Thus, the elements of the correlation

matrix are modeled as follows:

Rt[i, j] =


1 if i = j,

ρ
(1)
ij if fi,t−1 < κ and fj,t−1 < κ,

ρ
(2)
ij if fi,t−1 ≥ κ or fj,t−1 ≥ κ,

(3)

ρ
(k)
i,j = β

(k)
0 + β

(k)
1 contigi,j + β

(k)
2 comcoli,j + β

(k)
3 sameRegioni,j for k ∈ {1, 2}, i 6= j,

where contigi,j = 1 if countries i and j are contiguous and 0 if not, comcoli,j = 1 if they had

a common colonizer after 1945, and sameRegioni,j = 1 if they are in the same UN region.

The correlation model in (3) states that when countries i and j both have TFR below

κ, the correlation of their errors in the next time period is ρ
(1)
ij , and the correlation is ρ

(2)
ij

when at least one of them has a TFR greater than κ. In both cases, the correlation between

two countries is modeled as a linear combination of the three pairwise country covariates.

The parameters to be estimated therefore include the threshold κ, {β(1)
0 , β

(1)
1 , β

(1)
2 , β

(1)
3 } for
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the correlation when both countries have TFR less than κ, and {β(2)
0 , β

(2)
1 , β

(2)
2 , β

(2)
3 } for the

correlation when at least one of the two TFRs is greater than κ.

Since the diagonal elements of Rt are equal to one, the joint predictive distribution of all

country TFRs will have the same country marginal predictive distributions as those from the

current model. Thus expanding the model to allow for correlation will not change the marginal

country-specific predictive distributions, which is desirable given the good performance of the

current model for individual countries.

2.3 Exploratory Analysis

Exploratory analysis of one-time-period-ahead forecast errors from the model of Alkema et al.

(2011) and WPP data from 1950 to 2010 guided specification of the correlation model struc-

ture. For each time period and country, the forecast error is the difference between the

observed TFR and the average predicted value given TFR in the previous time period. Es-

timating the correlations between these forecast errors is difficult because the estimates are

based on a small amount of data (at most 11 five-year periods), and because the country-

specific predictive means and variances are given by the Bayesian hierarchical model. To

obtain empirical estimates of the correlation between the forecast errors for two countries,

conditional on their predictive variances, we used the posterior mean with an arc-sine prior.

This estimator was proposed by Fosdick and Raftery (2012), who showed it to have good small

sample performance compared to other frequentist and Bayesian estimators.

Figure 3 shows the number of five-year time periods from 1955 to 2010 for each country

pair after both had started their fertility decline. These counts represents the number of

forecast errors used to compute each correlation estimate. Since a number of countries have

only recently started their fertility decline, many pairwise correlation estimates were based

on only a few observations or, in the case of only two overlapping time periods, were not

computed at all. We therefore modeled the correlation structure rather than directly using

the noisy empirical estimates from the raw data.

The correlation estimates were higher on average when both countries had low TFR and

had completed or nearly completed the fertility transition. This led us to specify one model

for the correlation when the TFRs of both countries were below a threshold κ, and a different

model when at least one country had TFR above κ, where κ is to be estimated from the data.

The average estimated correlation between countries in the same UN-defined region when

both have TFR below 3 was 0.37, and for countries in different regions was 0.09, using only
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Figure 3: Number of 5-year time periods from 1955 to 2010 for each country pair after the
start of both country’s fertility declines.
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correlation estimates based on at least eight time periods. This suggests that the correlation

between forecast errors at low TFR levels may be related to geographical proximity, and

motivates modeling the correlation as a function of geographical predictors.

Since our aim is to make long-term projections, we consider only predictors that are essen-

tially time invariant. A database of country pairwise covariates is available from the Centre

d’Etudes Prospectives et d’Informations Internationales (CEPII) (Mayer and Zignago, 2006).

A list of the pairwise covariates in this database is shown in Table 2. Using linear regression,

we found that the covariates most predictive of the correlation estimates are whether two coun-

tries are contiguous (contig), whether they share a common colonizer after 1945 (comcol), and

whether they are in the same UN region (sameRegion).

Table 2: Pairwise variables in the CEPII database (Mayer and Zignago, 2006).

contiguous (contig) common official language
common colonizer after 1945 (comcol) share a language spoken by at least 9%
colonial link geodesic distance by most important cities
colonial relationship after 1945 geodesic distance by capital cities
currently in a colonial relationship distance weighted by city populations: arithmetic mean
were/are the same country distance weighted by city populations: harmonic mean

3 Parameter Estimation

Our method for estimating the parameters of the correlation model in (3) relies on the one-

time-period-ahead standardized forecast errors. The Bayesian hierarchical model of Alkema

et al. (2011) was fit to the 2010 WPP TFR estimates from 1950 to 2010, and posterior

distributions of θc given the data were obtained for each country. Using these parameter

estimates and the TFR in a given time period, a predictive distribution of the expected TFR

mc,t for the next time period was computed. The value of mc,t for a parameter vector θc is

m̂c,t|fWPP
c,t−1 ,θc =

{
fWPP
c,t−1 − d(θc, f

WPP
c,t−1 ), during the fertility transition,

2.1 + ρ(fWPP
c,t−1 − 2.1), after the fertility transition,

where fWPP
c,t−1 is the 2010 WPP TFR estimate for country c at time period t − 1. For each

sample θ(k)c from the posterior distribution, there is a corresponding expected TFR value at

time t.
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We define the parameter-specific standardized forecast error ec,t(θc) for country c, time

period t, and parameter vector θc as

ec,t(θc) =
fc,t − E[fc,t|fc,t−1,θc]

SD[fc,t|fc,t−1,θc]
=
fWPP
c,t − m̂c,t|fWPP

c,t−1 ,θc

σ̃c,t
.

We define the standardized one-time-period-ahead forecast error ec,t as the average over the

posterior samples of the parameter-specific forecast errors, namely

ec,t =
1

K

K∑
k=1

ec,t(θc
(k)),

where K is the number of parameter samples from the posterior distribution.

The standardized errors can be viewed as samples from a multivariate normal model with

correlation matrix Rt, et(θ) ∼ N (0, Rt) for t = 1955, ..., 2010. Ideally we would estimate the

correlation model parameters {κ, β
(1)
0 , β

(1)
1 , β

(1)
2 , β

(1)
3 , β

(2)
0 , β

(2)
1 , β

(2)
2 , β

(2)
3 } via maximum like-

lihood estimation based on the multivariate normal model. However, this is made challenging

by the fact that for any time period t, the vector et contains standardized errors for only those

countries that have started their fertility decline by time t, and that for many parameter values

the estimated correlation matrix is not positive definite, making the likelihood undefined.

Instead, we took a pseudo-likelihood approach that approximates the multivariate nor-

mal likelihood by a product of bivariate normal likelihoods (Besag, 1975). We call this the

Aggregation Pseudo-Likelihood (APL) and define it as

LAPL(κ,ρ(1),ρ(2)|e) =
T∏
t=1

∏
i<j

[
L1(ρ

(1)
ij |ei,t, ej,t) · I [(fi,t−1 < κ) ∩ (fj,t−1 < κ)]

+ L2(ρ
(2)
ij |ei,t, ej,t) · I [(fi,t−1 ≥ κ) ∪ (fj,t−1 ≥ κ)]

]
, (4)

where T is the number of observed time periods and L1 and L2 are bivariate normal likelihoods

with zero means, variances equal to one, and correlations ρ
(1)
ij and ρ

(2)
ij , respectively.

Using the APL, the likelihood can be maximized separately over {β(1)
0 , β

(1)
1 , β

(1)
2 , β

(1)
3 } and

{β(2)
0 , β

(2)
1 , β

(2)
2 , β

(2)
3 } for a fixed value of κ. For each value of the threshold κ from 0.5 to 9

children at intervals of 0.1, we estimated the model parameters by maximizing the APL in

(4) numerically using a Nelder-Mead method.

The APL was maximized at κ = 5 children, and the corresponding regression coefficients

are shown in Table 3. These estimates mirror the exploratory analysis result that correlations
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are larger on average when both countries have lower TFR. At TFR values below κ, the

correlation between two countries that are contiguous and in the same region but do not

share a common colonizer is 0.46. The correlation between countries that are not in the same

region but are contiguous is 0.37. The corresponding values when at least one TFR is above

κ are 0.13 and 0.11, respectively. Country pairs with no colonial or geographic relationship

have a correlation of 0.11 when both TFRs are below κ, and 0.05 otherwise. This illustrates

that the correlation between two countries is associated with their geographic and colonial

relationship.

Table 3: Parameter estimates for the correlation model (3). The estimate of the threshold κ
is 5.

intercept contig comcol sameRegion
(β0) (β1) (β2) (β3)

Both country TFRs below κ 0.11 0.26 0.05 0.09
At least one country TFR greater than κ 0.05 0.06 0.00 0.02

For many time periods, the APL estimates of the parameters result in estimated correla-

tion matrices Rt that are symmetric but not positive semidefinite. However, the correlation

matrix must be positive semidefinite to use it for simulation of forecast errors. The symmetric

positive semidefinite matrix closest in Frobenius norm to a given symmetric matrix is obtained

by zeroing out all negative eigenvalues of the original matrix (Driessel, 2007) and then recon-

structing the matrix. Thus, at each time point t for which Rt is not positive semidefinite, we

perform the following procedure:

1. Compute the eigenvalue decomposition of Rt to express it as Rt = UDUT , where U is

an orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues.

2. Replace all the negative eigenvalues by zero. The matrix D is thereby changed to D̃.

3. Compute the reconstructed matrix R̃t = UD̃UT .

4. The diagonal elements of R̃t will not equal one unless the original matrix was positive

semidefinite. Therefore, treat R̃t as a covariance matrix and rescale it to obtain a

reconstructed and rescaled correlation matrix R̂t to use in the projections.

The rescaling of the correlation matrix in step 4 ensures that the predictive distribution of

TFR for any individual country remains the same as from the current Bayesian hierarchical
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model of Alkema et al. (2011). Thus, only joint predictive distributions of the TFRs in more

than one country are affected. Note that the matrix approximation R̂t that results from

this procedure is singular unless the original matrix Rt is positive definite, but the predictive

distributions remain well defined.

4 Results

4.1 Model Validation

We assessed the model by estimating the current hierarchical model parameters from the data

for 1950 to 1990, projecting regional TFR for the UN’s 22 primary regions from 1990 to 2010

using the error correlation structure, and comparing the probabilistic projections with the

actual observations for the four held-out five-year periods. We approximated regional TFR by

a weighted average of country-specific TFRs, with weights proportional to the current female

populations of each country. A similar approximation was used for regional life expectancy

by Raftery et al (2012a).

Posterior distributions of the Bayesian hierarchical model parameters were obtained based

on data from 1950 to 1990. The parameter values in Table 3 were used in the correlation

model and not re-estimated based on the restricted data set, since these estimates are already

based on very limited data. Projections of TFR were obtained for the four five-year time

periods from 1990 to 2010 under the current model assuming independent errors and using

our proposed error correlation structure. The predictive distributions of the weighted average

TFR for each of the 22 regions were compared to the observed weighted average values.

Table 4 shows the proportion of observed weighted averages that fell within the 80%, 90%,

and 95% prediction intervals from both approaches. In each case the observed proportion

was closer or as close to the theoretical value under the correlation model than under the

independence model.

Figure 4 shows the posterior distribution of regional TFR for four regions, with the ob-

served regional value shown in red. The box associated with a given period and projection

method represents the 80% interval and the ends of the whiskers correspond to the 95% in-

terval. For Northern Europe the current model prediction intervals do not cover the observed

value in 1995 and 2000, but the correlation model prediction intervals do. Similar patterns are

seen in the other regions: the prediction intervals based on the correlation model are wider,

reflecting greater uncertainty, and contain more of the observed regional TFR values than the
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Table 4: Proportion of observed regional weighted average TFRs that fall within the specified
prediction intervals.

Time Period Model 80% CI 90% CI 95% CI

1990-1995 Independence 0.73 0.86 0.95
Correlation 0.86 0.91 0.95

1995-2000 Independence 0.68 0.73 0.86
Correlation 0.73 0.86 0.95

2000-2005 Independence 0.59 0.73 0.82
Correlation 0.64 0.73 0.95

2005-2010 Independence 0.73 0.82 0.91
Correlation 0.77 0.86 0.91

All Independence 0.68 0.78 0.89
Correlation 0.75 0.84 0.94

current model assuming independent errors.

Since the estimated correlations are larger when both countries have low TFR values, big-

ger differences between the current model and the correlation model prediction intervals are

seen for regions like Northern Europe and Central Asia, for which the majority of the coun-

tries have completed most of the fertility decline. Regions that have few countries with TFR

less than 5, such as Eastern and Western Africa, showed little change between the prediction

intervals from the current model and the correlation model, as expected.

4.2 Effect of Taking Account of Correlation

For a given parameter vector θ and time period t, the effect of taking account of correlation

on the variance of the regional TFR can be quantified analytically. We denote by pi the

proportion of the region’s female population that resides in country i, by fi the TFR in

country i in time period t, and by N the number of countries in the region. The regional

weighted average TFR is then
∑

i pifi where the sum is over all countries in the region.

If the forecast errors are assumed to be independent as in the current model, the predictive

variance of the regional TFR in time period t is Var[
∑

i pifi] =
∑

i p
2
i Var[fi], where Var[fi] =

σ̃2
i,t. As we project TFR into the future, eventually all countries will be in the last phase of
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Figure 4: Boxplots showing the 80% and 95% prediction intervals for the regional weighted
average TFR for the current model assuming independent errors and that with the correlation
error structure. The box of each boxplot represents the 80% prediction interval and the ends
of the whiskers mark the 95% prediction interval. The corresponding observed average TFR
based on the 2010 WPP is shown as a red dot.
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the model, having completed their fertility transition, where Var[fi] = s2. When all countries

in the region are in the post-transition phase,

Var

[∑
i

pifi

]
= s2

∑
i

p2i (5)

under the current model.

We will refer to
∑

i p
2
i as the independence factor (IF) since it represents the ratio of the

regional variance to the country-specific variance assuming independence in the post-transition

phase. It indicates the effect of the distribution of the population across countries in the region

and shows that the more evenly the regional female population is spread amongst the countries

within the region, the greater the variability in the regional estimate. This comes from the

fact that the IF is maximized when each pi = 1
N

for all countries in the region.

The variance of a region’s TFR under the correlation model is

Var

[∑
i

pifi

]
=

(∑
i

p2i Var[fi] + 2
∑
i<j

pipj

√
Var[fi]Var[fj]Rt[i, j]

)
.

When all countries have completed the fertility transition, this becomes

Var

[∑
i

pifi

]
= s2

(∑
i

p2i + 2
∑
i<j

pipjRt[i, j]

)
. (6)

We will refer to
(∑

i p
2
i + 2

∑
i<j pipjRt[i, j]

)
as the dependence factor (DF) since it is the

multiplicative factor in the variance under the correlation model. Equation (6) shows that

the larger the country correlations, especially between those countries with a relatively high

proportion of the regional female population, the larger the variance of the regional TFR.

The ratios of the dependence factor to the independence factor for the 22 UN regions are

shown in Table 5. The regions with the largest ratios are those whose predictive distributions

are most impacted by between-country correlations. For example, Western Africa and Eastern

Asia’s ratios are both greater than 2.5, indicating that the variance of the regional TFR

predictive distributions is more than 2.5 times greater for the model with the correlation

structure than that from the current model. Those regions with ratios close to 1, such as

Northern America and Australia/New Zealand, have similar predictive distributions from the

two models.

Both the between-country correlations and the proportion of the regional female population

within each country influence the effect of the correlations. The number of countries in the
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Table 5: The effect of the correlation model on the variance of the regional weighted average
TFRs. The ratio of the dependence factor to the independence factor (DF/IF) indicates the
multiplicative increase in the variance of the regional TFR when using the correlation model
compared to the current model where forecast errors are assumed independent. The “max
proportion” column shows the largest proportion of the current region female population that
is attributed to a single country and N is the number of countries in the region.

Region DF/IF Max Proportion N
Northern America 1.10 0.90 2
Eastern Asia 1.09 0.85 8
Eastern Africa 3.03 0.22 15
Middle Africa 1.98 0.48 6
Northern Africa 1.92 0.39 7
Southern Africa 1.14 0.87 5
Western Africa 1.43 0.59 13
Caribbean 1.94 0.27 16
Central America 1.25 0.73 8
South-Eastern Asia 1.76 0.40 10
Western Asia 2.57 0.33 18
Eastern Europe 1.88 0.49 10
Northern Europe 1.34 0.63 11
Southern Europe 1.65 0.39 12
Western Europe 1.91 0.43 7
Australia/New Zealand 1.08 0.83 2
Melanesia 1.12 0.78 5
South America 1.95 0.50 13
Micronesia 1.22 0.62 2
Polynesia 1.33 0.48 3
Central Asia 2.11 0.45 5
Southern Asia 1.34 0.73 8

region and the proportion of the regional female population that live in the largest country

are also shown in Table 5. If a high proportion of the female population lives in a single

country, correlations will not have a large effect on the prediction intervals for the region.

Examples of this include Northern America and Eastern Asia which have low DF/IF ratios

and high proportions of the female population in a single country. Overall, the regions whose

predictive intervals in the future will be most highly affected by between-country correlations

include Middle, Eastern and Northern Africa, Western and Central Asia, Eastern and Western

Europe, South America, and the Caribbean.
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4.3 Comparison to Previous Results

Others have investigated the correlation between country forecast errors and obtained similar

results to those reflected by the correlation model here. Keilman and Pham (2004) modeled

TFR in 18 countries in the European Economic Area (EEA) with an autoregressive conditional

heteroscedastic model and calculated the average correlation between country TFR errors to

be 0.33. Although not all countries in the EEA are within the same UN region, in our model

two countries with low TFR that are in the same region and not contiguous have a correlation

of 0.2 and those not in the same region but are contiguous have a value of 0.37. The magnitudes

of these correlations are similar to those found by Keilman and Pham (2004).

When Alho (2008) further studied the correlation matrix obtained by Keilman and Pham

(2004), he found a stark contrast between the correlations between the Mediterranean coun-

tries (Portugal, Spain, Italy, and Greece) and all others. His estimate of the average correlation

between forecast errors in Mediterranean and non-Mediterranean countries was 0.12 and the

correlation within each of these groups was 0.3. Recall that in our model, the correlation be-

tween countries that have low TFR and have no geographic or colonial relation is 0.11. Overall

the correlations between and within groups of countries from our model are comparable to

those found empirically by others.

Wilson and Bell (2007) modeled TFR using a random walk with drift and found the

correlation between errors for Queensland and the rest of Australia to be 0.4. According to

our correlation model, when TFR is less than 5, as it has been in Australia for many decades,

the correlation between Australia and a hypothetical country contiguous to it would be 0.46.

This is consistent with the result of Wilson and Bell (2007).

5 Discussion

When producing probabilistic population projections for country aggregates, it is critical to

take account of between-country correlations in forecast errors of vital rates (Lutz, 1996; Lee,

1998; Bongaarts and Bulatao, 2000). In this paper we have proposed a method for estimating

between-country correlations in forecast errors of the TFR for all countries and using them

to produce probabilistic TFR forecasts for aggregates of countries such as regions. For many

country pairs there are few relevant data available, and so we estimate the correlations by

modeling them as a function of three time-invariant predictors.

The resulting method yields the same probabilistic projections of TFR for individual coun-
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tries as the Bayesian hierarchical model of Alkema et al. (2011), which was used by the UN for

its (deterministic) medium population projections for all countries in the 2010 WPP (United

Nations, Department of Economic and Social Affairs, Population Division, 2011). In an out-of-

sample validation experiment, our correlation extension yielded better coverage of predictive

intervals than the current model of Alkema et al. (2011) that does not explicitly take account

of between-country correlations. The posterior samples produced by our method can be in-

corporated into probabilistic population projections in the same way as those produced by

the current method (Raftery et al 2012b).

Other ways of doing this have been proposed. Based on Alho and Spencer (2005)’s method

of constructing correlated projections using random seeds, Lutz et al. (1997) and Lutz et al.

(2001) combined projections, where the within and/or between region country correlation was

zero or one, to obtain overall correlations of 0.5 and 0.7 between forecast errors. Although this

method produces forecast errors with the desired marginal correlation, the individual forecasts

come from a mixture distribution of two extreme scenarios neither of which is realistic.

Keilman and Pham (2004) and Alho (2008) estimated correlations between TFR forecast

errors for a set of European countries for which long and high quality time series data are

available, and for which the TFRs have been low for a long time in most cases. This is the best

case scenario, for which empirical estimates of the correlations are reasonably accurate and

further modeling is probably unnecessary. Our method gives similar estimates to theirs for

the countries that they consider. Wilson and Bell (2007) developed probabilistic population

projections for Queensland and the rest of Australia using an empirical correlation between

TFR errors. Again, this is a good data situation, and their empirical correlation estimates

are consistent with our model-based ones.
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