The Probabilistic Life Table and I1ts Applications

Nan Li, United Nations
Shripad Tuljapurkar, Stanford University

Life-table variables are assigned certain valuealatges, and hence are treated
as deterministic. Moreover, the starting numbethef hypothetical cohort is taken
arbitrarily as 100 thousand. But the survival presef the hypothetic cohort is uncertain
unless the starting number is infinite, and theartainty depends on the starting number.
Thus, the nature of life tables is probabilisticicathe starting number of the hypothetic
cohort should not be arbitrary. This paper providesiethod to compute the
probabilistic life table, of which the starting nber for the hypothetical cohort is the
number of birth in a stationary population thatlie closest to the observed population
in the referred period. In a probabilistic life tk) each variable has a probability
distribution rather than a sample value, at all thges except the first one. Using
probabilistic life tables, one can tell, for examplhether the difference between two life
expectancies is statistically significant or noin&lly, deterministic life tables are

approximations for large populations.

In comparing mortality difference between countoe®ver times, the main
difficulty comes from the effect of the populatiage structure. In a certain period, fewer
deaths would occur in a population with younger sigacture. But the age structure is
determined by historical changes in fertility, nadityy, and migration, and has nothing to
do with the current mortality. To overcome thidfidiilty, a hypothetical cohort, which
obeys the observed probabilities of death at cparding ages, and is closed to
migration, is proposed to reflect the effect ofyomortality. To describe the survival
process of this hypothetical cohort, variableseastain ages, such as the number of

survivors, or the life expectancy, are constructett! these variables compose a life table.

! Views expressed in this paper are solely thoghefiuthors and do not necessarily reflect thoskeof
United Nations.



Despite various ways of computing their variabtegterministic life tables have two
common features. The first is that the starting benof the hypothetical cohort is
arbitrary, such as 100 thousand. And the secotithtsall life-table variables are assigned
certain values at all ages. It is obvious, howethet, the survival process of a cohort is
uncertain, unless the starting number of the cakarffinite. It is also intuitive that the
uncertainties depend on the starting number otdhert. Thus, the two features should

be removed.

In our previous work (Li and Tuljapurkar, 2012)etfeature of arbitrarily taking
the starting number of the hypothetical cohort l@sn removed, and life expectancy at
birth has been extended from a deterministic véitdha probabilistic variable. This
paper will provide a method to extend all life-&bhriables from deterministic to
probabilistic, which leads to produce probabilidifie tables. This paper will also show

the benefits of using probabilistic life tables.
The starting number of a probabilistic lifetable

As is mentioned above, a life table monitors tineisal process of a hypothetical

cohort that is closed to migration; and the stgrimmber of the hypothetic cohdyt, is

arbitrary in deterministic life tables. In the fitde table compiled by John Grant in 1662

(see Pollard, 1973),was taken as 100 in the manner of giving examples.value of

l,is now commonly used as 100 thousand, still witleorgason.

Does the value off, matter? The old answer is it does not matter, mpaating all

life-table variables. For example, life expectaatyirth is computed as
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wherel, and ,q, represent the number of survivors at agend the probability of dying

between age 0 ara] respectively. The old answer is based on thenagBon that all
individuals in the hypothetic cohort survive acdaogdto the specified probabilities of
death by age, which is taken as the first assumtiadhe paper. The second assumption
of this paper, which was not required by the olsivear, is that these individuals survive
independently each other. Under the two assumpttbessurvival process can be

described by a binomial distribution:

o= Blor 1), meaht] =1-,q,, varfe] = 2B o)

0 IO

It can be seen that when thavere infinitively large, there would her[:—a] =0, and
0

therefore the old answer would be correct. Howevercountry’s population is
stationary and the life table refers to a caleryear, then thé,is the number of annual
births, not infinitively large. Thus, a new ansu&reached for the real situation that the
size of population is not infinitively large: thalue ofl,does not matter only in
computing the mean values, but matters in des@ibther aspects, of all life-table

variables. According to this answer, the naturkfeftables is probabilistic, and the
deterministic life table should be extended to pimlistic.

For observed populations that are not stationargnd Tuljapurkar (2012)
suggested estimate the stationary-equivalent pbpnjavhose age-specific numbers are
the closest to that of the observed populatiorth@3fstationary-equivalent population,

thel,is
Z nLaZ po(ala+n)n|—a
IO - a=0 a=0 , (3)
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where p, (a,a+n)and, L, represent the person-years in age group [a,a+theafbserved and

the stationary population (with arbitraty), respectively; and. the lower bound of the open

age group. Computinthis |,does not require data additional to that of athfale.

Hereafter in this paper, the valuelgfs computed by (3), no longer 100 thousand or any

other arbitrary number.

To reflect of the effects of thelatively small, middig and large population sizes,

data on female death rate and population by a¢retd#ind, Switzerland and Japan in 2005 are

chosen from the Human Mortality Database (HNBp://www.mortality.org); and these are all

the data used in this paper. The observed andtayi-equivalent populations are shown in

Figure 1.
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Figure 1. Observed and stationary female populations, 2005

2 Among the 230 countries and areas of the worDid5, the number of countries with female popufatio

larger than that of Switzerland was 93.



It can be seen that the valuesl pére close to the numbers of annual births, but they

differ remarkably between the small, median angdarountries. The stationary
populations are also the best cohort models, isénse that they are the cohorts closest

to the observed populations.

The definition of death probability and the measurement uncertainty of mortality

In statistics, the probability of dying betweereag anda+n, .q,, can be defined

as

atn , (4)

when|,is infinitively large (see Agresti and Finlay, 199Ih demography, the definition
of death probability is often only (4), without tegng the condition of ‘when_ is

infinitively large’ (seeChiang, 1984). Comparing the two definitions, itlisar that the

demographic definition is consistent with the afdaer on how to choosky, while the

statistics definition is the basis of the new answgmoring the condition ofwhenl, is

infinitively large’, we will miss the probabilistic nature of lifatiles.To discuss the

measurement uncertainty of mortality, this conditi® necessary, as will see below.

In order to understand and to use the statistifiaitien, we first discuss the
probability of throwing a perfect coin and watchthg face. The true value of this
probability is, intuitively, 0.5. But throwing thein once, or using sample size one, the
observed value of the probability, computed aslmaber of having the face divided by
the number of throwing, can only be either 0 ddging large sample size, the observed
value will converge to the true value, accordinghte large number law (see Agresti and
Finlay, 1997). This is the reason of requiring ¢oedition of ‘infinitively large’.



We then turn to a more real situation that the traiee of the probability is
unknown, corresponds to throwing an imperfect ctirthis situation, the true value can
still be defined as the observed value when thepsagize approaches infinity, according
to the discussion of the perfect coin.

We now reach the reality in which the true valuangnown and the sample size
is not infinitively large. In reality, the true wad can be described as the observed value
plus a random variable, of which the mean is zathe variance is smaller when the

sample size is larger, according to (2).

Similarly, an observed probability of death, caédat from the data of death
registration and population count, is a sampleeaitd probability. Different from the
case of throwing a coin, in which the chance ferfdce to appear is naturally random,
the difference between the true and the observie@yaf death probability could be
affected by random and avoidable errors. When tbélable error does not exist, a
sample is called random or unbiased. From thistgdimiew, a sample of throwing a
coin is naturally unbiased. A sample of death pbdlig, however, may not be unbiased,
because there could be avoidable errors of misgaudeath and population. The third
assumption of this paper is that the observedampse, probabilities of death by age are
unbiased. Under this assumption, the true valweath probability can be defined as its
sample value with infinitively large sample sizeotdover, when the sample size is not
infinitively large, the true value of death probdpican be expressed by a sample value
plus a random variable, of which the mean is zedthe variance declines with the
increase of sample size. The variance of this nandariable could be computed

according to (2), for some special cases suclgasThis variance can also be computed

numerically: generating a sample distribution @& tleath probability, and then calculate
the variance using the sample distribution.

Similarly again, an observed life table, which msautput of the observed death
probabilities at all ages, is a sample of the lifegable. When the sample process, of
death registration and population count, is unhiadee true life table can be expressed



as the observed life table plus a random matrixchvblescribes the measurement
uncertainty of mortality. Of this matrix, each elem corresponds to a life-table variable
at a certain age, the mean values of these eleraen=ero according to the unbiased
assumption, and the variances of these elementdsrexpected to be smaller when the
sample size is larger, as will be indicated bygkamples below. The observed life table
and the random matrix compose the probabilistectible. The reason of not dealing
with life-table variables individually, but a wholiée table, is that life-table variables are
correlated, as will discuss below.

The uncertainty of a life-table variable is the siw@@ment uncertainty, which is
the cause of sample errors that are the differelnetgeen the observed and the true
values. The measurement uncertainty should bendigsghed from the forecast
uncertainty, which is derived from model errorstthue the differences between the

observed and the model values.

Computing probabilistic life tables

Assuming that thé, births survive independently according to the obsedeath

probabilities at each agesample distributions of all life-table variabléseach age can be
computed numerically. For life expectancy at bivthjch is a specific life-table variable
at a specific age, Li and Tuljapurkar (2012) intikchthat its probability distribution is
close to normal when the value Igis large, and provided an analytic way to comptge i

variance. In general, however, the probabilityrdisitions of life-table variables at all
ages are hard to derive analytically, especiallgmvthe number of corresponding event
is not sufficiently large; and we discuss how tograte sample distributions for all life-

table variables.

In a deterministic life table, all variables amé€tions of only age, which is
denoted as. In a probabilistic life table, all variables aredam variables, and hence
their values are functions of age and a sample eunatb which “0” is reserved for the

observation. More specifically, in this paper we ugo describe the number of survivors at



agea, which is a random variable; ahd(0) to represent the observed samplé_ ofSimilarly,

all life-table symbols are used to describe theesponding random variables, and to present a

sample value when an index is attached. The Ipasteof computing a probabilistic life table, in
this paper, is to generate other samplek, phamelyl, (i) , wherei=1,2,3,.., s, ; and s, stands
for the number of sample life tabléssing a larges, , the sample distributions ¢f, and of

all other life-table variables, can be computed.

The kernel of computing the sample distributianthie random survival. Letd, (0) be
the observed probability of dying between agenda+n, the survival process can be
characterized by a random functid{ g, (0)) that takes value 1 to represent the survival of an

individual from agea to agea+n, or O to describe the death of this individualWesn agesa and
a+n. Under the two assumptions mentioned above, nathatyeach individual survives

independently from the others according to the iipdgorobability of death by age, the survival

process obeys a Bernoulli distribution with parangd), (0) . The values ofA(,,q, (0)) can be
generated by almost any computing software. Fomele,if ;q,(0) = 0.1, then among 100
values ofA(,q, (0)) 1 would appear approximately 90 times, indicatimgghly 90

would survive to age 1 among 100 births. The eraatber ofA(,q,(0)) = 1 however,

is uncertain. Further, the uncertainty accumulates age. In other words, at older ages
the number of survivors is more uncertain thargatla These uncertainties can be

described by using multiple sample cohorts, eaatisstvith the same number of births,

and survives randomly according to the obsepegd . (0)

Denoting bys(a, j) the survival status of theh individual at age, and using
S(a, j) =1to represent alive at ageand s(a, j) = Odeceased before agethen the values of

s(a, j) can be computed as

(@, j) = a-n, ))A(,8.- (0). (5)

For each individual, his or hes(a, ]) starts with 1 at age zero, and at some unpredectad® it

drops to zero, meaning death.



At any agea, summing up all alive individuals produces the bemof survivors of a

cohort, and thereforthe first sample value df is obtained &s

LO=Y @), ©)

wherel,represents the number of stationary-equivalentigjiis is discussed in the

previous section.

Independently regenerating another sef\@fq, {O))each of thd, births at all
the agesand therusing (5) and (6), thealues of the second samplg, ,(8}e computed.
Repeating this procedure, the sample distributfoh, is obtained as$, (i) for i=1,2,...,S,, where
s, represents the number of sample cohorts. Sinck, {heare computed using the unbiased

.0, (0) in a numerical way that is equivalent to (2), tlaeg unbiased samples.

Given a unbiased sample(i) , all other life-table variables of tliga sample cohort can

be computed using the procedure of computing ameéiestic life table. The procedure of
computing deterministic life tables, as is indichite the appendix, aims to minimize the errors of
using discrete data to estimating the continuoug\sl process. Since these avoidable errors are
minimized, the result life table could be assumedi@biased sample of the true life table. Thus,
theith random sample of the probabilistic life table éngrated. The difference, between this

sample and the observed life table, is a samptleeofandom matrix mentioned above. Finally, a

large number, namelg, , of random sample life tables compose a probaibili$¢ table. In other

words, a probabilistic life table is an extensidm aeterministic life table, in which each variabl
at a certain age is extended from a sample valagtobability distribution. Moreover, this

extensiordoes not require data additional to that of a det@stic life table.

Illustrations



The number of sample cohorss, is taken as 1000 in this paper, fewer than wthieh

sample distribution may be unsmooth, and more Wisoh longer computing times are required.

Figure 2 displays the 1000 curveslgfi) for i=1,2, ..., 1000, for the three chosen countrigsst,

all the curves start from the valueslgfin Figure 1 Secondit can be seen that the survival

process of a cohort is probabilistic and canngtrioperly described in a deterministic way, as are
shown by the case of Iceland, and perhaps alswitz&land. This process, however, could be
approximately described by a deterministic curvemvthe size of population is large enough, as
is indicated by the case of Japan. Thus, as menitiosurvival processes, life tables are naturally

probabilistic, and deterministic life tables argagximations for large populations.
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Figure 2. Mumbers of female survivors by age, 2005

Furthermore, theéh sample||l, (i) , producesth sample of life table, which includes the

ith sample of life expectancy at birth(i) . The 1000 samples &, (i) , subsequently, provide a

sample distribution of life expectancy at birthjsashown by the bars in Figure 3.
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Figure 3. Zample distributions of life expectancy at birth, fermale 2005

The probability distributions dife expectancyvere commonly computed by a method

proposed by Chiang (1984), which is not based erstationary population and therefore
is logically improper. On the basis of the statignaopulation, Li and Tuljapurkar (2012)
provided probability distributions dife expectancy at birttas the curves show in Figure 3.

Applications based on onelifetable

Infant mortality ratelMR), defined as the ratio of the number of deatheyat
younger than 1 year to the number of births inréage period, is perhaps the most
widely estimated mortality measure. The varianceMi® can be computed according to
(2), using the observed number of annual birthsetgb,, as IMR[(1- IMR)/b,,
assuming that the deaths obey a binomial distobufThe observetMR corresponds to

the ,q, (0) in a life table namely the probability of dying between birth @y 1, and the

variance of, q, is correspondinglyd, (0) ((1—,q, (0))/l, . Although it is often assumed that
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19, (0) = IMR, the variances ofq,andIMR can be different, becausigis not exack,, which
is computed by (3)n general, the observed period death rate is derax, M ,in order to be
distinguished from the underlying cohort death rate (0) . In the view of point estimates, the
difference betweenm, (0) and M ,is negligible because mortality could change ofighsly
in a moderate period, and it is therefore oftemawesl that, m, (0)=,M , (Preston, Heuveline,
and Guillot, 2001). Similar to the case @f, (0) andIMR, the variances of m,and, M , could
differ notably. On the one hand, the variance bf ,can be computed according to binomial
distribution (Chiang1984 as ,M, (1-,0,(0))/ p,(a,a+n), where p, (a,a+ n)is the
number of observed population in age grfayp+n). On the other hand, the denominatoy of,
is a random variable. Thus, the variance bf, should not be calculated as

.M, (0)@-,q,(0))/ L, (0) according to the formula ofM ,, of which the denominator is a

deterministic number. Instead, the variance W, should be computed using its sample

distribution,, m, (i), asi[nma(i) - i m (K)/s 12 /(s, -1).

i=1

The uncertainties dMR could be remarkable as are shown in Figure 4thayt are not
properly noticedlgnoring these uncertainties, over-time fluctuasian infant mortality for
Iceland, as a country with reliable data, can hyabél understood. Using these

uncertainties, such fluctuations can be explairsedifferences between random samples.
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Figure 4. Sample distributions of infant mortality rate, female 2005

Adult mortality, usually defined as the probabildfydying between ages 15 and
60 and denoted a5, , is holding attention recently (e.g., Rajaratnaral2010). There

is no period correspondence Qfy.  (@nd thus the variance g, has to be computed
in the context life table. Moreover, since the nusw@ and the denominator gfq,. are
both random variables, the varianceg.of. should be computed using its sample
distribution,,;q,; (), in the way same as that o, i dijcussed above. Sample

distributions of ,; g, for the three countrieare show in Figure 5.
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Comparing to infant and adult mortality, old-agertality is perhaps more
important, because it covers a larger fractionaatbds among a population. In this paper,

we measure old-age mortality by the life expectaatcyge 65, namedy,. Because the
numerator and the denominator&fare both random variables, the variancegf
should not be computed by the formulasepf but using the sample distributioa, i ,()
which is displayed in Figure 6.
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A practically important question is how to expradge-table variable. Taking
life expectancy at birth as example, most coungriddish its value using two decimals,
butthe United Nations Population Division (e.g., Udifdations, 2009)ses one decimal, and
theWorld Health Organization (e.g., WHO, 2005) showf/anteger.In Figure 3, it can be
seen that for Iceland, even the integer changestbee5% confidence interval, and
therefore using two decimals may be misleadingtt@mother hand, showing only
integer for Japan is perhaps too rough. Thus, taicemumber of decimals cannot fit all
the countries; and the answer is beyond the foahatnumber. The applications based
on a single life table indicate that, for most do@s, a life-table variable can only be
described properly by a probability distributiof iy a number of whatever formats.

Applications based on multiplelifetables

The essential purpose of measuring mortality detiect the difference between

countries or the changes over times. To serveptinigose, deterministic life tables could

15



specify whether a life-table variable for one coymtr time is bigger than this variable
for another country or time; while probabilistiteltables can further test whether such a

difference is statistically significant, or it couappear merely by random chance.

Denote a life-table variable for populations 1 @nay x; andx,, and the
corresponding sample values kyi) and x,(i), i=0,1,2,... s,. To test the significance
of the difference between the mean values,cdindx,, the null hypothesis can be set as

Ho: mear{x,) = mear{x,) . Under this hypothesis, a test statistic can estrocted as

BT omeartyox) o

[~2 , =2
g, t0,

where ;7 and g7 are the estimated variances»gfandx,, and can be computed from

the sample distributions as
, & _ S )
02 = [%,() =Y (%, (K) /5,]% /s, h=12 (8)
i=1 k=1

On the other hand, without the null hypothesis,dhgerved value of the test statistis

Z(O) — Xl (O) - X2 (O) (9)

\O? +57

where the observed values of the life-table vagamlquestion, namely (0) andx, (0) ,

are computed from the corresponding determinigadables, in which, for example,
1.(0) =1, (1,0, (0)).

In the usual applications of significance test,dhalytic distribution of is

known (such adl(1,0) and so does its 95% confidence interval, namelyd, ] (such as

16



[-1.96,1.96]). Ifz(0)falls outside E,,c,], then theHo is rejected at 0.05 level; and the
conclusion is that the difference between the medues ofx, andx, is statistically
significant. Otherwise, the difference betweenrtieans ofx, andx, cannot be claimed

statistically significant.

Here we do not know the analytic distribution, tmet have the sample
distribution, ofz. Since the rankfor x, (i) and x, (i) are chosen randomly, the sample

distribution ofz can be constructed as

X, (1) =%, (i) -i(xl(i) =%(i)/s,

\ G2 + 7

i=1~s

n -

z(i) = (10)

Using the sample distribution afwe can find out the 95% confidence interval,E,],

not exactly, but approximately. Subsequently, sigance tests can be carried out,

following the same logic of using analytic distrilmuns.

Using this test to the life expectancy at birthhad three countries, results are

shown in Figure 7 below
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The probability distribution of the difference be@n life expectancies at birth is know
as approximately normal (Li and Tuljapurkar, 20E2)d the 95% confidence interval is
[c,,c,] =[-1.96, 1.96] It can be seen that the 95% confidence inteaigined from the

sample distributions are close to [-1.96, 1.96¢alh also be seen that the difference
between the mean values of life expectancy at birttapan and the other two countries
is significant; but between Iceland and Switzerledot. This conclusion is consistent
with the impression of Figure 3. Life expectan@édirth are compared for the purposes
of reflecting the difference in development levélst whether or not they are statistically

significant had been rarely asked.
Applying the test to infant mortality rate, resudtre displayed in Figure 8. It can

be seen that only the difference between Switzdréard Japan is significant, while the
others are not. Infant mortality rates are comp#oa@flect the difference between health
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care systems, and again whether or not they aist&tally significant had hardly been

noticed.
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Figure 8. Significance test: difference between infant mortality rate, female 2005

Using the test on adult mortality, results arevaf in Figure 9. It can be seen that,
between the three countries, nor difference isssiEdlly significant. This conclusion is

somewhat surprising, but it is consistent withititaitive impression from Figure 5.

19



"q'l:":I T T T T T T T

z(0)
200+ Hao distribution i
cl (o
I:l : "I 1
-4 -3 -2 -1 ] 1 2 3 4
lceland vs Switzerland

"IJ'I:II:I T T T T T T T
200+ i

ol —h
-4 -3 -2 -1 a 1 2 3 4
lceland and Japan

'd'I:II:I 1 1 T 1 1 1 1

200 .

a

-4 -3 -2 -1 a 1 2 3 4
owitzerland and Japan

Figure 9. Significance test: difference between adult mortality, female 2004

Finally, applying the test to life expectancy ge&5, results are displayed in
Figure 10. Entirely different from the differencettveen adult mortality, the differences
between life expectancies at age 65 are all sianitfi This conclusion is also impressive,

and it is consistent with Figure 6.
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Discussion

One may notice that, in Figures 3-10, the samgiutions are all similar to
normal, and in Figures 7-10 the [c,] ranges are all close to [-1.96, 1.96]. These

similarities cannot be coincidence, and they caexXmained by the Central Limit

Theorem (seégresti and Finlay, 1997).

LetY (i, j) be a random variable assigned tojtheéndividual in theith sample cohort,
wherej=1,2,...,|,and i=1,2,...,s, . DefiningY (i, ]) properly, the above four life-table variables

for theith cohort can be constructed as

12 (i)

ZYG,J')
X(i)=’:1IT. (11)
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For example, ilY (i, j) is defined as the age of death of jheindividual who is alive at age

a=65, then X (i) is the life expectancy at age 65 of ttlesample cohortFor another

example o=15in1_(i), if Y (1, ]) is defined as

if S(5j)=1 and S@©0 ) =0,

0, otherwise

Y, j)=1* (12)

whereS(a,j)=1 or 0 indicates that thigh individual is alive or deceased at ag¢hen

the[1l— X(i)] is the adult mortality of th#h sample cohort. For the same reason, the

infant mortality rate and life expectancy at bicdm also be presented by (11). Further,

assuming thaY i (j, andY (i, k) are independently and identically distributed Malga, then
the X (i), regardless of presenting which of the four ldéle variables, is approximately
a normal variable wheh, i (i9 large, according to the Central Limit Theorenmcs all

the four variables of each of the sample cohoriy@mproximately normal distribution,

so should be sample distributions in Figures 3-6.

Applying (10) and (11) to a life-table variable tavo populations, namelkand
X,that can be assumed independent each other, themtk7) is not only a random

variable with mean 0 and variance 1, but also apprately normal, according to the
Central Limit Theorem. Thus, why all the sampléritisitions look normal and why all

the ranges¢, ,c,] are close to [-1.96, 1.96], in Figures 7-10, amewered.

The number of stationary-equivalent births,and the number of sample
cohortss, , are essential in this paper. When the valuk isflarger, the variances of life-
table variables will be smaller. On the other hamiden the value o§, is larger, the

sample distributions of these variables will be sther, and the estimated variances

from the sample distribution will be more accurate.
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Summary

The age of death is uncertain for an individualcédingly, the nature of life
tables is probabilistic. In this paper, we extenttetllife table from deterministic to
probabilistic using three assumptions. The firsuasption is that all individuals survive
according to the specified probability of deathdgye, which is also the basis of the
deterministic life table. The second assumptiaihas all individuals survive
independently each other; and the third is thattiserved probabilities of death by age
are unbiased. Our extension requires two additi(thalsecond and third above)
assumptions, but not additional data. In a proksttullife table, each variable has a

probability distribution rather than a sample valateall the ages except the first one.

Using applications of a single life table, we irated that the uncertainties of life-
table variables are too large to ignore. For mosntries, a life-table variable at a certain
age cannot be expressed properly by a number diegarof using how many decimals; it
can only be properly described by a probabilityrdsition.

Using applications of multiple life tables, we stemhthat significance test can be
carried out on all life-table variables. The difiace between a certain variable in two life
tables is essential in mortality and related stsdBait mistakes could be made by
explaining the socioeconomic reasons of a relatilalye difference that may merely be
a random effect, or by ignoring a relatively sntafference that could turn out important.

To avoid such mistakes, significance test can lygfuie

In this paper, the observed death probabilifigs, , @& assumed unbiased,

implying that there is no avoidable error of misetig death or population. In our
opinion, avoidable errors are negligible for mosteloped nations, and for some
developing countries as well, because they havabtelvital registration and population

census. For these countries, computing probabiligt tables is a progress.
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For many developing countries, however, the vatifes, (0) are often obtained
from model life tables and surveys focusing on anfgw ages. Whether thesg,  (0)
could be assumed unbiased, at all the ages, mdglizable. If the g, (Orould not be

assumed unbiased, then how to apply the methddsopaper will need further studies.
The reason is, for example, a biased measure cke andifference statistically
significant but it in fact is not. Nonetheless,alabllections are improving among
developing countries, which will make computing lpabilistic life tables useful in the

future.

As is shown above, the probabilistic life table noyes mortality measure, but
can it be useful? It depends on what computing p@and carrying media are available.
Using abacus for calculation and printing resultgapers, the probabilistic life table
cannot even exist. But the probabilistic life tabda be useful, when calculations are
done by computers and results are published omette

Appendix

This appendix focuses on the procedure of usiag#ues ofl,to compute all
other life-table variables for life tables, and tbemulas apply to any sample i (e

first discuss the case of abridged life tablesylich agea takes the values of 0, 1, 5, 10,
and so on until an open age group.

Givenl,, the number of deathd,and the values ofq, are immediately

available:
nda = Ia _Ia+n’
.d. ) (A1)
nqa =

a
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For age groups 0-1 and 1-4, the calculations asedbon the results of the West

Family of the Coaldemeny (1966) model life tables. Death rate andthe person years

lived by the deaths before age, 4, , are obtained as

: (11qt;>m it (1lqt;))qq = A> 0107,
=) TP B il . Cif A< 0107, (A2
1M _[1_(1_000)@:'0]'*'\/[1_(l_%o)mo]z'*"]’m:m g ( )
2|]:01qu
— 1% [(l+1lTb)—1mO
= . (A.3)
% 1oy

And the values of,a, and ,m, are computed as

= b, ,m, = 0107, (A.4)

C10 +Cll|¥m0’ 1m0 < 0107’

= ah A5
- a)5a, (A5)

The values of parameters in (A.2)-(A.5) are in Eabll

Table A.1 Parameters of (2) and (3)

b0 bl COO C01 ClO Cll
Male .33 1.352 .045 2.684 1.651 -2.816
Female .35 1.351 .053 2.8 1.522 -1.518

For other age groups, the values,af and ,m,come from solve the below equations:
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2

aa:D_n_[ ma_nma_nma—n]
" 2 12" nm, (A6)
m — nqa

n - (n_ naa)mqa '
of which the first is th&reville (1943) formula and the second is a definit

Having the values of m_, the number of person-years lived by the cohamween ages

a anda+n is obtained as

2 (A.7)

Finally, the other two life-table variables, namtig total person years lived over agand

the life expectancy at age can then be computed as

T.=2 by
y=a

Ta

€, :|—.

a

(A.8)

Finally, for the open age group starting atagelL,, =1/_m, (0), assuming that the

population is stationary in the open age group.

The above formulas apply to abridged life tables. domplete life tables, of
which the length of all age intervals is one yéAr1)-(A.3) still apply for age group

[0,1), and so doegL,, =1/_m, (Opr the open age group. For other age groups, one

could follow the Human Mortality Databasgww.mortality.org to usga, = 0.5

Having |, and,a, , ,L,can be computed by

1La=1 ar1T1%y mlla_llaﬂ) ) (A,9)

and all other life-table variables can be calcdatecordingly.
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