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 Life-table variables are assigned certain values at all ages, and hence are treated 

as deterministic. Moreover, the starting number of the hypothetical cohort is taken 

arbitrarily as 100 thousand. But the survival process of the hypothetic cohort is uncertain 

unless the starting number is infinite, and the uncertainty depends on the starting number. 

Thus, the nature of life tables is probabilistic; and the starting number of the hypothetic 

cohort should not be arbitrary. This paper provides a method to compute the 

probabilistic life table, of which the starting number for the hypothetical cohort is the 

number of birth in a stationary population that is the closest to the observed population 

in the referred period. In a probabilistic life table, each variable has a probability 

distribution rather than a sample value, at all the ages except the first one. Using 

probabilistic life tables, one can tell, for example, whether the difference between two life 

expectancies is statistically significant or not. Finally, deterministic life tables are 

approximations for large populations. 

 

In comparing mortality difference between countries or over times, the main 

difficulty comes from the effect of the population age structure. In a certain period, fewer 

deaths would occur in a population with younger age structure. But the age structure is 

determined by historical changes in fertility, mortality, and migration, and has nothing to 

do with the current mortality. To overcome this difficulty, a hypothetical cohort, which 

obeys the observed probabilities of death at corresponding ages, and is closed to 

migration, is proposed to reflect the effect of only mortality. To describe the survival 

process of this hypothetical cohort, variables at certain ages, such as the number of 

survivors, or the life expectancy, are constructed; and these variables compose a life table. 
                                                 
1 Views expressed in this paper are solely those of the authors and do not necessarily reflect those of the 
United Nations. 
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Despite various ways of computing their variables, deterministic life tables have two 

common features. The first is that the starting number of the hypothetical cohort is 

arbitrary, such as 100 thousand. And the second is that all life-table variables are assigned 

certain values at all ages. It is obvious, however, that the survival process of a cohort is 

uncertain, unless the starting number of the cohort is infinite. It is also intuitive that the 

uncertainties depend on the starting number of the cohort. Thus, the two features should 

be removed.  

 

In our previous work (Li and Tuljapurkar, 2012), the feature of arbitrarily taking 

the starting number of the hypothetical cohort has been removed, and life expectancy at 

birth has been extended from a deterministic variable to a probabilistic variable. This 

paper will provide a method to extend all life-table variables from deterministic to 

probabilistic, which leads to produce probabilistic life tables. This paper will also show 

the benefits of using probabilistic life tables. 

 

The starting number of a probabilistic life table 

 

 As is mentioned above, a life table monitors the survival process of a hypothetical 

cohort that is closed to migration; and the starting number of the hypothetic cohort,0l , is 

arbitrary in deterministic life tables. In the first life table compiled by John Grant in 1662 

(see Pollard, 1973), 0l was taken as 100 in the manner of giving examples. The value of 

0l is now commonly used as 100 thousand, still without a reason. 

  

 Does the value of 0l matter? The old answer is it does not matter, in computing all 

life-table variables. For example, life expectancy at birth is computed as 
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where al and 0qa  represent the number of survivors at age a and the probability of dying 

between age 0 and a, respectively. The old answer is based on the assumption that all 

individuals in the hypothetic cohort survive according to the specified probabilities of 

death by age, which is taken as the first assumption of the paper. The second assumption 

of this paper, which was not required by the old answer, is that these individuals survive 

independently each other. Under the two assumptions, the survival process can be 

described by a binomial distribution: 
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It can be seen that when the 0l were infinitively large, there would be 0]var[
0

≈
l

la , and 

therefore the old answer would be correct. However, if a country’s population is 

stationary and the life table refers to a calendar year, then the 0l is the number of annual 

births, not infinitively large. Thus, a new answer is reached for the real situation that the 

size of population is not infinitively large: the value of 0l does not matter only in 

computing the mean values, but matters in describing other aspects, of all life-table 

variables. According to this answer, the nature of life tables is probabilistic, and the 

deterministic life table should be extended to probabilistic.  

 

For observed populations that are not stationary, Li and Tuljapurkar (2012) 

suggested estimate the stationary-equivalent population, whose age-specific numbers are 

the closest to that of the observed population. Of this stationary-equivalent population, 

the 0l is  
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where ),( naapo +  and an L represent the person-years in age group [a,a+n) of the observed and 

the stationary population (with arbitrary 0l ), respectively; and ω the lower bound of the open 

age group. Computing this 0l does not require data additional to that of a life table. 

Hereafter in this paper, the value of 0l is computed by (3), no longer 100 thousand or any 

other arbitrary number.  

 

 To reflect of the effects of the relatively small, middle2, and large population sizes, 

data on female death rate and population by age of Iceland, Switzerland and Japan in 2005 are 

chosen from the Human Mortality Database (HMD, http://www.mortality.org/); and these are all 

the data used in this paper. The observed and stationary-equivalent populations are shown in 

Figure 1. 

 

 

                                                 
2 Among the 230 countries and areas of the world in 2005, the number of countries with female population 
larger than that of Switzerland was 93. 
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It can be seen that the values of 0l are close to the numbers of annual births, but they 

differ remarkably between the small, median and large countries. The stationary 

populations are also the best cohort models, in the sense that they are the cohorts closest 

to the observed populations.   

 

 

The definition of death probability and the measurement uncertainty of mortality 

 

 In statistics, the probability of dying between ages a and a+n, anq , can be defined 

as 
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when al is infinitively large (see Agresti and Finlay, 1997). In demography, the definition 

of death probability is often only (4), without requiring the condition of ‘when al  is 

infinitively large’ (see Chiang, 1984). Comparing the two definitions, it is clear that the 

demographic definition is consistent with the old answer on how to choose0l , while the 

statistics definition is the basis of the new answer. Ignoring the condition of ‘when al  is 

infinitively large ’, we will miss the probabilistic nature of life tables. To discuss the 

measurement uncertainty of mortality, this condition is necessary, as will see below. 

 

In order to understand and to use the statistics definition, we first discuss the 

probability of throwing a perfect coin and watching the face. The true value of this 

probability is, intuitively, 0.5. But throwing the coin once, or using sample size one, the 

observed value of the probability, computed as the number of having the face divided by 

the number of throwing, can only be either 0 or 1. Using large sample size, the observed 

value will converge to the true value, according to the large number law (see Agresti and 

Finlay, 1997). This is the reason of requiring the condition of ‘infinitively large’. 
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We then turn to a more real situation that the true value of the probability is 

unknown, corresponds to throwing an imperfect coin. In this situation, the true value can 

still be defined as the observed value when the sample size approaches infinity, according 

to the discussion of the perfect coin.  

 

We now reach the reality in which the true value is unknown and the sample size 

is not infinitively large. In reality, the true value can be described as the observed value 

plus a random variable, of which the mean is zero and the variance is smaller when the 

sample size is larger, according to (2). 

 

Similarly, an observed probability of death, calculated from the data of death 

registration and population count, is a sample of death probability. Different from the 

case of throwing a coin, in which the chance for the face to appear is naturally random, 

the difference between the true and the observed values of death probability could be 

affected by random and avoidable errors. When the avoidable error does not exist, a 

sample is called random or unbiased. From this point of view, a sample of throwing a 

coin is naturally unbiased. A sample of death probability, however, may not be unbiased, 

because there could be avoidable errors of miscounting death and population. The third 

assumption of this paper is that the observed, or sample, probabilities of death by age are 

unbiased. Under this assumption, the true value of death probability can be defined as its 

sample value with infinitively large sample size. Moreover, when the sample size is not 

infinitively large, the true value of death probability can be expressed by a sample value 

plus a random variable, of which the mean is zero and the variance declines with the 

increase of sample size. The variance of this random variable could be computed 

according to (2), for some special cases such as 0qa . This variance can also be computed 

numerically: generating a sample distribution of the death probability, and then calculate 

the variance using the sample distribution. 

 

Similarly again, an observed life table, which is an output of the observed death 

probabilities at all ages, is a sample of the true life table. When the sample process, of 

death registration and population count, is unbiased, the true life table can be expressed 
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as the observed life table plus a random matrix, which describes the measurement 

uncertainty of mortality. Of this matrix, each element corresponds to a life-table variable 

at a certain age, the mean values of these elements are zero according to the unbiased 

assumption, and the variances of these elements are also expected to be smaller when the 

sample size is larger, as will be indicated by the examples below. The observed life table 

and the random matrix compose the probabilistic life table. The reason of not dealing 

with life-table variables individually, but a whole life table, is that life-table variables are 

correlated, as will discuss below. 

 

The uncertainty of a life-table variable is the measurement uncertainty, which is 

the cause of sample errors that are the differences between the observed and the true 

values. The measurement uncertainty should be distinguished from the forecast 

uncertainty, which is derived from model errors that are the differences between the 

observed and the model values. 

 

Computing probabilistic life tables 

 

Assuming that the 0l births survive independently according to the observed death 

probabilities at each age, sample distributions of all life-table variables at each age can be 

computed numerically. For life expectancy at birth, which is a specific life-table variable 

at a specific age, Li and Tuljapurkar (2012) indicated that its probability distribution is 

close to normal when the value of 0l is large, and provided an analytic way to compute its 

variance. In general, however, the probability distributions of life-table variables at all 

ages are hard to derive analytically, especially when the number of corresponding event 

is not sufficiently large; and we discuss how to generate sample distributions for all life-

table variables. 

 

 In a deterministic life table, all variables are functions of only age, which is 

denoted as a. In a probabilistic life table, all variables are random variables, and hence 

their values are functions of age and a sample number, of which “0” is reserved for the 

observation. More specifically, in this paper we use al to describe the number of survivors at 
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age a, which is a random variable; and )0(al to represent the observed sample of al . Similarly, 

all life-table symbols are used to describe the corresponding random variables, and to present a 

sample value when an index is attached.  The basic part of computing a probabilistic life table, in 

this paper, is to generate other samples of al , namely )(il a , where i=1,2,3,.., ns ; and ns  stands 

for the number of sample life tables. Using a large ns , the sample distributions of al , and of 

all other life-table variables, can be computed. 

 

 The kernel of computing the sample distributions is the random survival. Let )0(anq be 

the observed probability of dying between age a and a+n, the survival process can be 

characterized by a random function ))0(( anq∆ that takes value 1 to represent the survival of an 

individual from age a to age a+n, or 0 to describe the death of this individual between ages a and 

a+n. Under the two assumptions mentioned above, namely that each individual survives 

independently from the others according to the specified probability of death by age, the survival 

process obeys a Bernoulli distribution with parameter )0(anq . The values of ))0(( anq∆ can be 

generated by almost any computing software. For example, if 1.0)0(01 =q , then among 100 

values of ))0(( 01q∆ , 1 would appear approximately 90 times, indicating roughly 90 

would survive to age 1 among 100 births. The exact number of 1))0(( 01 =∆ q , however, 

is uncertain. Further, the uncertainty accumulates over age. In other words, at older ages 

the number of survivors is more uncertain than at age 1. These uncertainties can be 

described by using multiple sample cohorts, each starts with the same number of births, 

and survives randomly according to the observed )0(anq .  

 

Denoting by ),( jas the survival status of the jth individual at age a, and using 

1),( =jas to represent alive at age a and 0),( =jas deceased before age a, then the values of 

),( jas can be computed as  

 

))0((),(),( nanqjnasjas −∆−= .   (5) 

 

For each individual, his or her ),( jas starts with 1 at age zero, and at some unpredictable age it 

drops to zero, meaning death. 
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 At any age a, summing up all alive individuals produces the number of survivors of a 

cohort, and therefore the first sample value of al is obtained as:  
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where 0l represents the number of stationary-equivalent births, as is discussed in the 

previous section.  

 

Independently regenerating another set of ))0(( anq∆  for each of the 0l births at all 

the ages, and then using (5) and (6), the values of the second sample, )2(al , are computed. 

Repeating this procedure, the sample distribution of al is obtained as )(il a for i=1,2,…, ns , where 

ns represents the number of sample cohorts. Since the )(il a are computed using the unbiased 

)0(anq  in a numerical way that is equivalent to (2), they are unbiased samples.  

 

Given a unbiased sample )(il a , all other life-table variables of the ith sample cohort can 

be computed using the procedure of computing a deterministic life table. The procedure of 

computing deterministic life tables, as is indicated in the appendix, aims to minimize the errors of 

using discrete data to estimating the continuous survival process. Since these avoidable errors are 

minimized, the result life table could be assumed an unbiased sample of the true life table. Thus, 

the ith random sample of the probabilistic life table is generated. The difference, between this 

sample and the observed life table, is a sample of the random matrix mentioned above. Finally, a 

large number, namely ns , of random sample life tables compose a probabilistic life table. In other 

words, a probabilistic life table is an extension of a deterministic life table, in which each variable 

at a certain age is extended from a sample value to a probability distribution. Moreover, this 

extension does not require data additional to that of a deterministic life table.     

 

 

Illustrations 
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 The number of sample cohorts,ns , is taken as 1000 in this paper, fewer than which the 

sample distribution may be unsmooth, and more than which longer computing times are required. 

Figure 2 displays the 1000 curves of )(il a for i=1,2, …, 1000, for the three chosen countries. First, 

all the curves start from the values of 0l  in Figure 1. Second, it can be seen that the survival 

process of a cohort is probabilistic and cannot be properly described in a deterministic way, as are 

shown by the case of Iceland, and perhaps also of Switzerland. This process, however, could be 

approximately described by a deterministic curve when the size of population is large enough, as 

is indicated by the case of Japan. Thus, as monitors of survival processes, life tables are naturally 

probabilistic, and deterministic life tables are approximations for large populations.    

  

 

 Furthermore, the ith sample, )(il a , produces ith sample of life table, which includes the 

ith sample of life expectancy at birth, )(0 ie . The 1000 samples of )(0 ie , subsequently, provide a 

sample distribution of life expectancy at birth, as is shown by the bars in Figure 3. 
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The probability distributions of life expectancy were commonly computed by a method 

proposed by Chiang (1984), which is not based on the stationary population and therefore 

is logically improper. On the basis of the stationary population, Li and Tuljapurkar (2012) 

provided probability distributions of life expectancy at birth, as the curves show in Figure 3. 

 

Applications based on one life table 

 

 Infant mortality rate (IMR), defined as the ratio of the number of deaths at ages 

younger than 1 year to the number of births in a certain period, is perhaps the most 

widely estimated mortality measure. The variance of IMR can be computed according to 

(2), using the observed number of annual births, namely ob , as obIMRIMR /)1( −⋅ , 

assuming that the deaths obey a binomial distribution. The observed IMR corresponds to 

the )0(01q in a life table, namely the probability of dying between birth and age 1, and the 

variance of 01q  is correspondingly 00101 /))0(1()0( lqq −⋅ . Although it is often assumed that 
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IMRq =)0(01 , the variances of 01q and IMR can be different, because ob is not exact0l , which  

is computed by (3). In general, the observed period death rate is denoted as an M in order to be 

distinguished from the underlying cohort death rate )0(an m . In the view of point estimates, the 

difference between )0(an m  and an M is negligible because mortality could change only slightly 

in a moderate period, and it is therefore often assumed that anan Mm =)0( (Preston, Heuveline, 

and Guillot, 2001). Similar to the case of )0(01q  and IMR, the variances of an m and an M could 

differ notably. On the one hand, the variance of an M can be computed according to binomial 

distribution (Chiang, 1984) as ),(/))0(1( naapqM oanan +− , where ),( naapo + is the 

number of observed population in age group [a,a+n). On the other hand, the denominator ofan m  

is a random variable. Thus, the variance of an m should not be calculated as 

)0())/0(1)(0( ananan Lqm − according to the formula of an M , of which the denominator is a 

deterministic number. Instead, the variance of an m  should be computed using its sample 

distribution, )(iman , as ∑ ∑
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The uncertainties of IMR could be remarkable as are shown in Figure 4, but they are not 

properly noticed. Ignoring these uncertainties, over-time fluctuations in infant mortality for 

Iceland, as a country with reliable data, can hardly be understood. Using these 

uncertainties, such fluctuations can be explained as differences between random samples.  

   



 13 

 

 

Adult mortality, usually defined as the probability of dying between ages 15 and 

60 and denoted as 1545q , is holding attention recently (e.g., Rajaratnam et al, 2010). There 

is no period correspondence of )0(1545q , and thus the variance of 1545q has to be computed 

in the context life table. Moreover, since the numerator and the denominator of 1545q are 

both random variables, the variance of1545q should be computed using its sample 

distribution, )(1545 iq , in the way same as that of )(iman discussed above. Sample 

distributions of 1545q for the three countries are show in Figure 5.  
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 Comparing to infant and adult mortality, old-age mortality is perhaps more 

important, because it covers a larger fraction of deaths among a population. In this paper, 

we measure old-age mortality by the life expectancy at age 65, namely65e . Because the 

numerator and the denominator of 65e are both random variables, the variance of 65e  

should not be computed by the formulas of 0e , but using the sample distribution, )(65 ie , 

which is displayed in Figure 6.  
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 A practically important question is how to express a life-table variable. Taking 

life expectancy at birth as example, most countries publish its value using two decimals, 

but the United Nations Population Division (e.g., United Nations, 2009) uses one decimal, and 

the World Health Organization (e.g., WHO, 2005) shows only integer. In Figure 3, it can be 

seen that for Iceland, even the integer changes over the 95% confidence interval, and 

therefore using two decimals may be misleading. On the other hand, showing only 

integer for Japan is perhaps too rough. Thus, a certain number of decimals cannot fit all 

the countries; and the answer is beyond the format of a number. The applications based 

on a single life table indicate that, for most countries, a life-table variable can only be 

described properly by a probability distribution, not by a number of whatever formats. 

 

Applications based on multiple life tables 

 

 The essential purpose of measuring mortality is to detect the difference between 

countries or the changes over times. To serve this purpose, deterministic life tables could 
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specify whether a life-table variable for one country or time is bigger than this variable 

for another country or time; while probabilistic life tables can further test whether such a 

difference is statistically significant, or it could appear merely by random chance. 

 

Denote a life-table variable for populations 1 and 2 by 1x  and 2x , and the 

corresponding sample values by )(1 ix and )(2 ix , i=0,1,2,… ns . To test the significance 

of the difference between the mean values of 1x  and 2x , the null hypothesis can be set as 

Ho: )()( 21 xmeanxmean = . Under this hypothesis, a test statistic can be constructed as 
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where 2
1σ̂  and 2

2σ̂  are the estimated variances of 1x  and 2x , and can be computed from 

the sample distributions as 
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On the other hand, without the null hypothesis, the observed value of the test statistic z is  
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where the observed values of the life-table variable in question, namely )0(1x and )0(2x , 

are computed from the corresponding deterministic life tables, in which, for example, 

))0(1()0( 00 qll aa −= . 

     

In the usual applications of significance test, the analytic distribution of z is 

known (such as N(1,0)) and so does its 95% confidence interval, namely [1c , 2c ] (such as 
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[-1.96,1.96]).  If z(0) falls outside [ 1c , 2c ], then the Ho is rejected at 0.05 level; and the 

conclusion is that the difference between the mean values of 1x  and 2x is statistically 

significant. Otherwise, the difference between the means of 1x  and 2x cannot be claimed 

statistically significant. 

 

Here we do not know the analytic distribution, but we have the sample 

distribution, of z. Since the rank i for )(1 ix and )(2 ix  are chosen randomly, the sample 

distribution of z can be constructed as 
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Using the sample distribution of z, we can find out the 95% confidence interval, [1c , 2c ], 

not exactly, but approximately. Subsequently, significance tests can be carried out, 

following the same logic of using analytic distributions.   

  

 Using this test to the life expectancy at birth of the three countries, results are 

shown in Figure 7 below 
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The probability distribution of the difference between life expectancies at birth is know 

as approximately normal (Li and Tuljapurkar, 2012), and the 95% confidence interval is 

[ 1c , 2c ] ≈[-1.96, 1.96]. It can be seen that the 95% confidence intervals obtained from the 

sample distributions are close to [-1.96, 1.96]. It can also be seen that the difference 

between the mean values of life expectancy at birth of Japan and the other two countries 

is significant; but between Iceland and Switzerland is not. This conclusion is consistent 

with the impression of Figure 3. Life expectancies at birth are compared for the purposes 

of reflecting the difference in development levels, but whether or not they are statistically 

significant had been rarely asked. 

 

 Applying the test to infant mortality rate, results are displayed in Figure 8. It can 

be seen that only the difference between Switzerland and Japan is significant, while the 

others are not. Infant mortality rates are compared to reflect the difference between health 
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care systems, and again whether or not they are statistically significant had hardly been 

noticed.  

 

 

  Using the test on adult mortality, results are shown in Figure 9. It can be seen that, 

between the three countries, nor difference is statistically significant. This conclusion is 

somewhat surprising, but it is consistent with the intuitive impression from Figure 5.  
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 Finally, applying the test to life expectancy at age 65, results are displayed in 

Figure 10. Entirely different from the difference between adult mortality, the differences 

between life expectancies at age 65 are all significant. This conclusion is also impressive, 

and it is consistent with Figure 6. 
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Discussion 

 

One may notice that, in Figures 3-10, the sample distributions are all similar to 

normal, and in Figures 7-10 the [1c , 2c ] ranges are all close to [-1.96, 1.96]. These 

similarities cannot be coincidence, and they can be explained by the Central Limit 

Theorem (see Agresti and Finlay, 1997).  

 

Let ),( jiY be a random variable assigned to the jth individual in the ith sample cohort, 

where j=1,2,…, 0l and i=1,2,…, ns . Defining ),( jiY properly, the above four life-table variables 

for the ith cohort can be constructed as 
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For example, if ),( jiY is defined as the age of death of the jth individual who is alive at age 

a=65, then )(iX is the life expectancy at age 65 of the ith sample cohort. For another 

example of a=15 in )(il a , if ),( jiY is defined as 
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where S(a,j)=1 or 0  indicates that the jth individual is alive or deceased at age a, then 

the )](1[ iX− is the adult mortality of the ith sample cohort. For the same reason, the 

infant mortality rate and life expectancy at birth can also be presented by (11). Further, 

assuming that ),( jiY and ),( kiY are independently and identically distributed variables, then 

the )(iX , regardless of presenting which of the four life-table variables, is approximately 

a normal variable when )(il a is large, according to the Central Limit Theorem. Since all 

the four variables of each of the sample cohort obey approximately normal distribution, 

so should be sample distributions in Figures 3-6.  

 

 Applying (10) and (11) to a life-table variable for two populations, namely1x and 

2x that can be assumed independent each other, then the z in (7) is not only a random 

variable with mean 0 and variance 1, but also approximately normal, according to the 

Central Limit Theorem. Thus, why all the sample distributions look normal and why all 

the ranges [1c , 2c ] are close to [-1.96, 1.96], in Figures 7-10, are answered.  

 

The number of stationary-equivalent births,0l , and the number of sample 

cohorts, ns , are essential in this paper. When the value of 0l is larger, the variances of life-

table variables will be smaller. On the other hand, when the value of ns is larger, the 

sample distributions of these variables will be smoother, and the estimated variances 

from the sample distribution will be more accurate.  
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Summary 

 

The age of death is uncertain for an individual. Accordingly, the nature of life 

tables is probabilistic. In this paper, we extended the life table from deterministic to 

probabilistic using three assumptions. The first assumption is that all individuals survive 

according to the specified probability of death by age, which is also the basis of the 

deterministic life table. The second assumption is that all individuals survive 

independently each other; and the third is that the observed probabilities of death by age 

are unbiased. Our extension requires two additional (the second and third above) 

assumptions, but not additional data. In a probabilistic life table, each variable has a 

probability distribution rather than a sample value, at all the ages except the first one. 

 

Using applications of a single life table, we indicated that the uncertainties of life-

table variables are too large to ignore. For most countries, a life-table variable at a certain 

age cannot be expressed properly by a number, regardless of using how many decimals; it 

can only be properly described by a probability distribution.  

 

Using applications of multiple life tables, we showed that significance test can be 

carried out on all life-table variables. The difference between a certain variable in two life 

tables is essential in mortality and related studies. But mistakes could be made by 

explaining the socioeconomic reasons of a relatively large difference that may merely be 

a random effect, or by ignoring a relatively small difference that could turn out important. 

To avoid such mistakes, significance test can be helpful.    

 

In this paper, the observed death probabilities, )0(anq , are assumed unbiased, 

implying that there is no avoidable error of miscounting death or population. In our 

opinion, avoidable errors are negligible for most developed nations, and for some 

developing countries as well, because they have reliable vital registration and population 

census. For these countries, computing probabilistic life tables is a progress.  
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For many developing countries, however, the values of )0(anq are often obtained 

from model life tables and surveys focusing on only a few ages. Whether these )0(anq  

could be assumed unbiased, at all the ages, may be debatable. If the )0(anq  could not be 

assumed unbiased, then how to apply the method of this paper will need further studies. 

The reason is, for example, a biased measure can make a difference statistically 

significant but it in fact is not. Nonetheless, data collections are improving among 

developing countries, which will make computing probabilistic life tables useful in the 

future.  

 

As is shown above, the probabilistic life table improves mortality measure, but 

can it be useful? It depends on what computing power and carrying media are available. 

Using abacus for calculation and printing results on papers, the probabilistic life table 

cannot even exist. But the probabilistic life table can be useful, when calculations are 

done by computers and results are published on internet. 

 

Appendix 

 

 This appendix focuses on the procedure of using the values of al to compute all 

other life-table variables for life tables, and the formulas apply to any sample )(il a . We 

first discuss the case of abridged life tables, of which age a takes the values of 0, 1, 5, 10, 

and so on until an open age group. 

 

 Given al , the number of death and and the values of anq are immediately 

available: 
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 For age groups 0-1 and 1-4, the calculations are based on the results of the West 

Family of the Coale-Demeny (1966) model life tables. Death rate 01m and the person years 

lived by the deaths before age 1, 01a , are obtained as 
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And the values of 14a  and 14 m  are computed as 
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The values of parameters in (A.2)-(A.5) are in Table A.1 

 

Table A.1 Parameters of (2) and (3)  

 
0b  1b  00c  01c  10c  11c  

Male .33 1.352 .045 2.684 1.651 -2.816 

Female .35 1.351 .053 2.8 1.522 -1.518 

 

 For other age groups, the values of ana and an m come from solve the below equations: 
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of which the first is the Greville (1943) formula and the second is a definition. 

 

 Having the values of an m , the number of person-years lived by the cohort between ages 

a and a+n is obtained as 

 

an

an
an m

d
L = .    (A.7) 

 

Finally, the other two life-table variables, namely the total person years lived over age a and 

the life expectancy at age a, can then be computed as 
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Finally, for the open age group starting at ageω , )0(/1 ωω mL ∞∞ = , assuming that the 

population is stationary in the open age group. 

 

 The above formulas apply to abridged life tables. For complete life tables, of 

which the length of all age intervals is one year, (A.1)-(A.3) still apply for age group 

[0,1), and so does )0(/1 ωω mL ∞∞ =  for the open age group. For other age groups, one 

could follow the Human Mortality Database (www.mortality.org)  to use 5.01 =aa .  

Having al and aa1  , aL1 can be computed by 

)( 1111111 ++ −⋅+= aaaaa llalL , (A.9) 

and all other life-table variables can be calculated accordingly. 
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