Seasonal Effects of Water Quality on Infant and Child Health in India

Elizabeth Brainerd Nidhiya Menon

Version: October 1, 2012

Abstract: This paper examines the impact of fertilizer agrichemicals in water on infant and child health using water quality data combined with data on the health outcomes of infants and children from the 1992-93, 1998-99, and 2005-06 Demographic and Health Surveys of India. Because fertilizers are applied at specific times in the growing season, the concentrations of agrichemicals in water vary seasonally and by cropped area as some Indian states plant predominantly summer crops while others plant winter crops. Our identification strategy exploits the differing timing of the planting seasons across regions and differing seasonal prenatal exposure to agrichemicals to identify the impact of agrichemical contamination on various measures of child health. The results indicate that children exposed to higher concentrations of agrichemicals during their first month experience worse health outcomes on a variety of measures (infant mortality, neo-natal mortality, height-for-age z scores and weight-for-age z-scores); these effects are largest among the most vulnerable groups, particularly the children of uneducated poor women living in rural India.

J.E.L. Classification Codes: O12, I15, Q53, Q56

Key words: Fertilizer Agrichemicals, Water Pollutants, Child Health, Infant Mortality, India

Thanks to Andrew Foster, Dilip Mookherjee, and John Strauss for comments on research design. Thanks to Linda Bui, Sonia Bhalotra, Rema Hanna and seminar participants at Brandeis, the IGC-ISI Conference in New Delhi, India, Williams College, the Fletcher School for Law and Diplomacy at Tufts University, and IGC Growth Week 2012. We are grateful to Rema Hanna and Michael Greenstone for sharing their subset of Central Pollution Control Board's (CPCB) data on water pollution measures. We extend our gratitude to many people at CPCB especially J.S. Kamyotra, D.D. Basu, and Rajendra Bhardwaj for facilitating access to and for answering numerous questions on the water data. Thanks to Kelly Hodgson at the UNEP GEMS/Water Program for help with the India data. Menon thanks the International Growth Center's India Central Program for financial support. Yubing Cui, Carol Hughes-Hallett Ramos, Tarini Nalwa, Udit Patwardhan, and Ari Pipe-Mazo provided excellent research assistance. The usual disclaimer applies. Address for correspondence: Elizabeth Brainerd, Susan and Barton Winokur Professor in Economics and Women's and Gender Studies, Department of Economics, MS 021, Brandeis University, Waltham, MA 02454. Tel.781.736.4816. Email: ebrainer@brandeis.edu. Nidhiya Menon, Associate Professor of Economics, Department of Economics, MS 021, Brandeis University, Waltham, MA 02454. Tel. 781.736.2230. Email: nmenon@brandeis.edu.

I. Introduction

The Green Revolution in India transformed the country from one heavily reliant on imported grains and prone to famine to a country largely able to feed itself and successful in achieving its goal of food security. Yields of the country's main crops, wheat and rice, increased dramatically and farmers prospered from the use of Green Revolution technologies including high-yield variety seeds, irrigation, pesticides and nitrogenous fertilizer. The growth in agricultural production improved the well-being of millions of Indians by reducing the incidence of hunger and raising the living standard of the rural poor, but it also exacted a toll on the country's environment. In particular, the heavy use of fertilizers to increase yields led to high levels of toxicity and contamination of surface and ground water in India.

This paper examines the impact of fertilizer agrichemicals in water on infant and child health in India. We study agro-contaminants in water as it is considered to be a reliable measure of human exposure, and use data on water quality from monitoring stations run by India's Central Pollution Control Board (CPCB) combined with data on the health outcomes of infants and children from the 1992-93, 1998-99, and 2005-06 Demographic and Health Surveys (DHS) of India. We focus on fertilizers because they have relatively clear application times, unlike pesticides which may be used (based on need) throughout the crop cycle. Because fertilizers are applied early in the growing season and residues may subsequently seep into water through soil run-off, the concentrations of agrichemicals in water vary seasonally; water contamination also varies regionally by cropped area in India because states in northern India plant predominantly winter crops while southern Indian states plant mainly summer crops. Our identification strategy exploits the increase in fertilizer use over time in India, the differing timing of the crop planting seasons across India's states, and the differing seasonal prenatal

_

¹ Furthermore, unlike fertilizer, pesticide use in India has remained relatively stable across the years we analyze. Moreover, note that our measure of fertilizer includes the agrichemicals that comprise pesticides.

exposure of infants and children to identify the impact of fertilizer agrichemical contaminants in water on various measures of child health.

Our analysis of the effects of agrichemicals provides several noteworthy results. We find that the presence of fertilizer chemicals in water in the month of conception significantly increases the likelihood of infant mortality, particularly neo-natal mortality. The presence of toxins in water in the first month is also significantly associated with reduced height-for-age and weight-for-age z scores for children below five years of age. These effects are most pronounced among vulnerable populations, in particular, the children of uneducated poor women living in rural India.

Evaluating the link between water agrichemical contamination and child health in India is important for several reasons. First, in rural India, women form 55-60 percent of the agricultural labor force and are often at the forefront of farming activities. This suggests that they are directly exposed to chemical applications that are made to the soil to improve productivity; their children are exposed both in utero and after birth to these toxins and at these young ages are highly vulnerable to environmental insults. This exposure may contribute to the relatively poor indicators of child health in India: Indian children have one of the highest rates of stunting and wasting among all developing countries. These rates are higher than predicted given the level of per capita income and infant mortality rates in the country.² Second, since water is motile, high levels of chemical contaminants in water have the potential to affect individuals outside of farming communities. Third, evidence from biomedical studies indicates that seasonal exposure to water toxins can affect health outcomes not only in the current population but also in subsequent generations. For example, illnesses such as coronary heart disease which have been shown to be more likely in adults who as babies were of low-birth weight - are inheritable and may be bequeathed to subsequent generations. Such transmission occurs even without any additional exposure to the chemical contaminants that caused the health problems in the preceding

² See Deaton and Drèze (2009) for a discussion of the relatively low anthropometric indicators for Indian children.

generation. The importance of fetal health is emphasized in Behrman and Rosenzweig (2004) which demonstrates that fetal nutrition as measured by birth-weight is a significant determinant of adult earnings. With a few exceptions, the impact of water pollution on all of these dimensions of health in developing countries has largely been neglected in the economics literature, as we discuss below.

The paper is structured as follows. The next section provides a brief overview of the economics, public health and biomedical literature on pollution and child health outcomes in developed and developing countries. The section that follows describes the implementation and impact of the Green Revolution in India, the features of the planting and growing seasons of rice and wheat which we exploit in the paper, and water quality and its regulation in India. We then describe our methodology and data and present our results. Robustness checks are presented thereafter, and the paper concludes with a discussion of implications for policy.

II. Previous Literature

This research fits into several strands of literature in economics. An active area of current research examines the impact of air pollution and other contaminants on infant mortality and child health in developed countries. Many of these studies focus on the United States and use the discontinuity in air pollution created by plausibly exogenous events such as the Clean Air Act, economic recession which reduces industrial activity and emissions, and the introduction of electronic tolls on highways which reduced idling time and car exhaust. These studies document a statistically significant and quantitatively large effect of reduced air pollution on infant and child health (Chay and Greenstone 2003, Currie and Walker 2011, Sanders and Stoecker 2011). Other papers analyzing the impact of negative health shocks on infants *in utero*, such as exposure to the 1918 influenza epidemic and radiation fallout from the 1986 Chernobyl disaster (Almond 2006; Almond, Edlund and Palme 2009), further confirm the vulnerability of infants to prenatal exposure to contaminants and underscore the

³ See Almond and Currie (2010) for a comprehensive review of this literature.

long-lasting effects such exposure can have, extending well into adulthood.⁴

Relatively few studies have examined the impact of pollution on health in developing countries, and these have primarily considered the effects of air pollution on child and adult health (for example, Pitt *et al.* 2006; Jayachandran 2009; Arceo-Gomez *et al.* 2012). The work most closely related to ours is Greenstone and Hanna (2011) which assesses the impact of air and water quality regulations on infant mortality across Indian cities for the years 1986-2007. Using air and water pollution data from India's CPCB combined with data on air and water quality regulations, they find that air quality regulations significantly reduced air pollution, which in turn led to a statistically insignificant reduction in infant mortality; however, the water pollution regulations have been ineffective at reducing measures of surface water pollution. As these authors discuss, the implementation of the water quality policies appears to be weak and underfunded in India. Greenstone and Hanna (2011) does not consider the implications of fertilizer agrichemicals in water.

A second strand of literature examines the contributions of public health measures (e.g., reduced exposure to lead; enhanced water quality) to improvements in population health. Studies in this area include Cutler and Miller (2005) which demonstrates that access to clean water through filtration and chlorination was associated with large reductions in infant and child mortality between 1900 and 1936 in the United States. Similarly, the privatization of local water companies in Argentina in the 1990s was associated with increased access to clean water and significant reductions in child mortality (Galiani *et al.* 2005). Other recent papers including Zhang (2012) and Ebenstein (2012) document the health impacts of improved water quality in China.

Biomedical studies in the developed world document the relationship between chemicals in

_

⁴ Currie and Vogl (2012) provide a comprehensive survey of the literature on the impact of early-life health shocks on adult outcomes in developing countries. Recent papers in this line of research include Maccini and Yang (2009) and McEniry and Palloni (2010).

water and risks to adult and infant health relatively well. Winchester *et al.* (2009) shows that in the United States (US), there is a significant correlation between seasons of high agrichemical content in water and total birth defects. Garry *et al.* (2002) finds that in Minnesota, pesticide applicators had children with high rates of specific birth defects, and that the risk was most pronounced for infants conceived in the crop-sowing spring months of April to June. Public health studies of poor water quality in developing countries include Heeren *et al.* (2003) and Restropo *et al.* (1990). Heeren *et al.* (2003) reports a positive correlation between agricultural chemical exposure and birth defects in South Africa, whereas Restropo *et al.* (1990) analyzes the prevalence of abortions, prematurity, and stillbirths among female workers and wives of male workers employed in the floriculture industry of Colombia where pesticide use is widespread. Given resource constraints and high contamination levels, it is likely that the damaging impacts of agrichemicals in water are more pronounced in other poor countries such as India.⁵ An evaluation of this topic using the lens of economics is thus highly relevant.

III. The Green Revolution, Agriculture, and Water Quality in India

At independence in 1947, agriculture in India was characterized by labor-intensive subsistence farming methods that resulted in low yields and continued vulnerability to inadequate food supplies.

The country had suffered a devastating famine – the Bengal famine of 1943 – in which an estimated two to four million people died; this famine was later the subject of Amartya Sen's seminal work on famines (Sen 1977). Indian leaders considered food security to be of paramount importance after independence and implemented programs to achieve this goal including promotion of modern farming techniques broadly referred to as the "Green Revolution." These techniques were implemented across many developing countries, including India, beginning in the mid-1960s. Green Revolution methods primarily entailed (i) increased area under farming; (ii) increased use of irrigation; (iii) double-cropping, that is

_

⁵ Indeed we find suggestive evidence that the probability of having a prematurely born child is positively associated with the level of nitrogen in water.

planting two crops rather than one annually; (iv) adoption of high-yield variety (HYV) seeds; and (v) significantly increased use of inorganic fertilizers and pesticides.

HYV seeds can increase crop yields by two to four times those of indigenous seeds, but they require more fertilizer and water than do indigenous seeds. Besides high yields, these seeds also have a shorter growing cycle than traditional seeds and thus in some areas crops may be planted twice (double cropped). The main HYV seeds used in India were wheat (K68) and rice (IR8, or "Miracle Rice"). The diffusion of HYV seeds proceeded rapidly in India, particularly for wheat; for example the share of acreage under wheat sown with HYV seeds increased from 4.1 percent in the first year of the program (1966-67) to 30.0 percent only two years later. Over the same period, consumption of nitrogenous fertilizer increased from 658,700 metric tons to 1,196,700 metric tons, and consumption of phosphatic and potassic fertilizer increased in similar proportions (Chakravarti 1973).

Production of the country's main crops, wheat and rice, increased dramatically after the Green Revolution. Over a span of thirty years from 1960 to 1990, wheat production increased by more than five times (from 10 million tons to 55 million tons) and there was a greater than two-fold increase in rice production (from 32 million tons to 74 million tons). India became a net exporter of rice and wheat in 1978 (Chand 2001) and famine has not reappeared in the country since independence. At the same time, consumption of synthetic nitrogen-based fertilizers such as Urea and Nitrogen-Phosphate-Potassium (NPK) fertilizers rose almost nine-fold in India from the early 1960s to 2003-2004. Figure 1 illustrates the rapid increase in use of NPK fertilizers per hectare under cultivation between 1960 and 2008. These fertilizers are heavily subsidized by the Government of India and recent research suggests that the large

6

⁶ Directorate of Economics and Statistics, Dept. of Agriculture and Cooperation, Ministry of Agriculture, India. ⁷ Tewatia, R.K., and T.K. Chanda (2005). "Fertilizer Use by Crop," in Fertilizer Use by Crop in India. Rome: Food and Agriculture Organization of the United Nations. Chapter 4.

subsidies are directly responsible for their overuse.⁸

The liberal use of agrochemicals has worked in tandem with rapid industrial growth in recent times to lead to high levels of water pollution in India. Water quality is monitored by India's CPCB which was established in 1974 as part of the Water Act of 1974. This legislation represented India's first effort to reduce water pollution and focused primarily on reducing industrial water pollution and extending sewage treatment facilities rather than reducing the prevalence of agrochemicals. As discussed in Greenstone and Hanna (2011), the water quality regulations have had a negligible impact to date mainly because of weak implementation.

Although a cross-country comparison of water quality may in general be inappropriate given differing regulations and circumstances, it serves to paint a picture of water contamination in India relative to other countries. As noted in Greenstone and Hanna (2011), water pollution concentrations in India are higher than in other countries such as China and the United States. Focusing specifically on nitrogen (the primary composite of fertilizers such as NPK) measured in milligrams per liter (mg/l), Figure 2 shows that the average nitrogen level in Indian water bodies is significantly higher than in the U.S. and China over a comparable time period. India's dominance in nitrogen consumption is evident even in relation to Pakistan, a neighbor that shares agricultural and socio-economic practices with India.

Moreover, the concentration of agrochemicals in water is likely to be higher in months in which crops are sown. In the Netherlands, atrazine concentration peaks in June, the month when the herbicide of which it is a component is applied for weed control purposes (Carr and Neary 2008). In the United States, Winchester *et al.* (2009) demonstrates that nitrate concentration in surface water is at its peak level in the spring months of April to June when crops are sown. A similar pattern is evident in our water data for India. This is illustrated in Figures 3 and 4 which portray monthly data on levels of

⁸ Chattopadhay, G.N., B.C. Roy, and R. Tirado (2009). Subsidising Food Crisis. Bangalore: Greenpeace India. See Bardhan and Mookherjee (2011) for an analysis of one of the subsidized farm input programs implemented in West Bengal from 1982-1995, which included provision of HYV seeds, pesticides, and fertilizers.

nitrogen and phosphate concentration in water by type of agricultural region. The bulk of wheat production in India occurs in the northern states of Uttar Pradesh, Punjab, Haryana, Bihar, Madhya Pradesh and Gujarat. Wheat is a *rabi* (winter) crop sown beginning in November through to April and harvested from late spring onwards. As illustrated in Figure 3, nitrogen concentrations peak in January in the wheat-producing states but not in other areas, as expected. Most rice production in India occurs in the southern states of Andhra Pradesh, Tamil Nadu and Kerala and in the eastern states of Orissa, West Bengal and Assam; rice is a *kharif* (summer) crop and is sown in June-August and reaped in autumn. Figure 4 shows that phosphate concentrations peak in September in the rice-producing states. It is these differences in soil endowments across the country, making some regions more suitable for rice production and others for wheat production, and differences in the timing of crop cycles for these two main crops which allow us to identify the impact of water agro-toxins on infant and child health.

IV. Identification Methodology

The main question is whether live births resulting from conceptions during months of the year when fertilizer agrichemicals in water are at their highest levels (the early cropping season in wheat and rice producing regions) face greater risk of negative health outcomes such as infant mortality and low levels of attainment on height-for-age and weight-for-age z scores as of age five. In its basic form, this may be answered by estimating the following empirical specification:

$$H_{ijt} = \beta_0 + \beta_1 F_{jtm_c} + \beta_2 P_{jtm_c} + \beta_3 X_{ijt}^c + \beta_4 X_{ijt}^w + \beta_5 X_{ijt}^h + \beta_6 X_{ijt}^{HH} + \beta_7 X_{jt}$$
$$+ \beta_8 M + \beta_9 T + \beta_{10} S_j + \beta_{11} (M \times S_j) + \beta_{12} (T \times S_j) + \varepsilon_{ijt}$$
(1)

-

⁹ We present a graph for phosphate concentrations for rice since nitrogen is very soluble in water (Tonn 2004) and the cultivation of rice involves two stages – sowing and transplantation – both of which are water-intensive. Since phosphates are relatively less soluble in water, a distinct peak in its concentration is evident in rice-producing states compared to other states. Further, the sowing season for rice is less clear-cut as compared to wheat. There could be several rice harvests in a year, particularly in southern India where soil and climate are more amenable. We focus on the *kharif* crop for rice in this figure as this is the largest harvest. This also contributes to the lack of discernible pattern in nitrogen in rice states since the *kharif* season coincides with the arrival of the monsoons in the rice growing states. As noted in Ebenstein *et al.* (2011), rainfall may dilute the presence of agrichemicals by supplying clean water.

where H_{ijt} denotes a health outcome for child i in state j in year t, F_{jtm_c} denotes the average of a dummy that measures the presence of fertilizer agrichemicals in water in the state and year in m_c , the month of conception, and P_{itm_c} is a general measure of water quality that also reflects industrial activity and human presence in the state and year in m_c . X_{ijt}^c are child-specific indicators (order of birth, gender), X_{ijt}^{w} are woman (mother)-specific indicators (measures of maternal risk factors such as tobacco use and work characteristics, and mother's demographic characteristics including age, education, and general health), X_{ijt}^h are husband (father)-specific indicators (age, education, and type of work), X_{ijt}^{HH} are household-specific indicators (rural/urban indicator, age and gender of household head, household religion and caste, indicator for access to electricity and ownership of assets such as refrigerators, televisions, and motorcycles as well as information on sources of drinking water), and X_{it} are statespecific indicators (per capita net state domestic product, annual rainfall, average temperature). In order to control for month and year-specific time trends and regional level heterogeneity, equation (1) includes month dummies (M), year dummies (T), region dummies (S_i), and interactions of month and region dummies and year and region dummies. ε_{ijt} is the standard idiosyncratic error term. The coefficient of interest is β_1 : the impact of fertilizer agrichemicals in the month of conception on child health outcomes.

We use state-year-month information on the presence of agrichemicals in water to measure *in utero* exposure to fertilizer toxins (F_{jtm_c}). State-year-month information on biochemical oxygen demand (BOD) is the other measure of water pollution in equation (1).¹⁰ BOD is included in the regressions so that its absence does not bias the effect of the fertilizer agrichemical variable. For a variety of reasons it is likely that both variables are measured with error. First, there could be

^{. .}

¹⁰ See Sigman (2002) for a discussion of the benefits of using BOD as a general measure of water pollution. Further, there may be some overlap between agrichemicals and BOD, but not perfectly so. BOD measures the amount of oxygen required in the decomposition of organic matter, and the main source of BOD pollution (especially arsenic and mercury) is sewage and industrial activity. BOD is composed of a different set of chemicals as compared to those that constitute fertilizers; thus there is little feedback between the two.

measurement errors in the early days of water monitoring when technology was relatively primitive and not all agrichemicals and general water pollutants were evaluated (1979-1987). Second, the number of monitoring stations has increased significantly over time (188 in 1979-1987 to 870 as of 2005). Thus early measures of water quality are less likely to accurately portray ground realities at an all-India level. Third, unlike BOD which is recorded directly, we construct an indicator for presence of fertilizer agrichemicals in water based on the chemical composition of fertilizers (described below). As a constructed variable, our indicator for agrichemicals is especially prone to errors in measurement. Finally, lacking information on district of residence of women and their children in the DHS data, we match demographic data to the water data on the basis of state of residence. The use of state-level information is a proxy for the level of toxins women and children are exposed to in their environment; the use of this proxy may result in additional errors.

For these reasons, we use instrumental variables to isolate the exogenous component of agrichemicals and BOD to obtain an unbiased estimate of β_1 and β_2 in equation (1). The identifying instruments that we use are interactions of crop area (area planted in the state with rice normalized by total state area; area planted in the state with wheat normalized by total state area) and crop sowing months (indicator for months of the year when rice and wheat are sown in different states of India). Since planting seasons across India's regions do not coincide for these main crops, this is a source of variation that may be exploited to establish causal links between water agro-contaminants (and the broader measure of water quality) and child health. Our two stage least squares model is of the standard form where the first stage (shown for agrichemicals and written as a function of the identifying instruments only) is:

$$F_{jtm_c} = \gamma_0 + \gamma_1 (R_j x M^R) + \gamma_2 (W_j x M^W) +_{\vartheta_{ij}}$$
 (2)

 R_j and W_j denote normalized crop area for rice and wheat, respectively. M^R and M^W are indicators for

months of the year when rice and wheat crops are sown, respectively. The interaction terms in equation (2) are the identifying instruments. The second stage is similar to equation (1) except that F_{jtm_c} and P_{jtm_c} (BOD) are replaced by their predicted orthogonal components from (2).

In this two stage specification, the identifying assumption required for the effects to be interpreted as causal is that the instruments satisfy the exclusion restriction (correlated with the presence of agrichemicals and BOD in water but conditional on these variables, uncorrelated with child health), and there are no omitted variables that are both correlated with health outcomes and seasonal levels of water pollution. We present numerous tests of instrument validity below; in particular, we show that the timing of conception across months is orthogonal to the identifying instruments.

V. Data

Water Data

The water quality data are from the Central Pollution Control Board (CPCB) of India, which, as of 2005, monitors inland water quality at 870 stations under two programs: the Global Environment Monitoring System (GEMS) and Monitoring of Indian National Aquatic Resources (MINARS). The monitoring network covers all rivers and their tributaries, and other sources of water such as creeks, wells, tanks, lakes, ponds, and canals. Although the CPCB has collected water data from 1978 onwards, they maintain electronic records only from 2005. Computable water quality information on CPCB measures was compiled from two other sources: the UNEP GEMS/Water program, which computerized CPCB records from 1978 to 2005 for a subset of monitoring stations; and Greenstone and Hanna (2011) which uses electronic water quality data from 1986 to 2005 for a subset of monitoring station (489 stations in 424 cities). Remaining gaps were filled in by using information from annual water quality statistics publications obtained from the CPCB. While it is likely that water toxicity levels vary widely over the year, we use the annual average level of each water quality measure to proxy for the missing

monthly value for the corresponding state and year (since the annual handbooks do not publish monthly level information) to create our complete monthly-level water quality data which spans 1978-2005. We end at 2005 because that year coincides with the last round of DHS data.

The CPCB collects detailed water quality statistics on a number of measures. These include information on microbiology (faecal coliform), nutrients (nitrates, nitrogen kjeldahl, phosphates), organic matter (biochemical oxygen demand), major ions (chloride, magnesium, potassium), metals (arsenic, boron, lead, mercury) and physical/chemical characteristics of water (pH, temperature). As noted above, BOD is included in the models as a control for the general level of water pollution with higher levels of BOD indicative of more polluted water. Figure 5 reports the trend in BOD in our sample. The approximately 28 percent increase in the level of BOD from 1992 to 2005 shows that industrial and other pollutants have contributed to a serious contamination of water in recent times.

Further, since there is no direct measure of the presence of fertilizer agrichemicals in the water data, we create a commensurate variable using information on the main chemical components of fertilizers in India. This is accomplished by constructing a dummy variable that indicates the presence in water of any of the main fertilizer constituents over threshold levels defined for drinking water. ¹¹ Figure 6 shows the trend in the average presence of fertilizer agrichemicals in water. It is apparent that agrichemical levels have risen over time – these data indicate that there has been about a 56 percent increase in the presence of agrichemicals in the month of conception between 1992 and 2005. Table 1 reports average BOD and fertilizer agrichemical levels in the month of conception, and the first, second and third trimesters, demarcated by the years for which we have demographic data from India. These

1

¹¹ Information on the components of fertilizers is available from India's Department of Fertilizer under the Ministry of Chemicals and Fertilizers (http://fert.nic.in/aboutfert/aboutfertilizers.asp). More specifically, the components are nitrogen, nitrates, nitrites, phosphates, potassium, fluoride and chromium. Thresholds for drinking water are obtained from the Environmental Protection Agency website at http://water.epa.gov/drink/contaminants/basicinformation/index.cfm, since the CPCB's thresholds for drinking water are defined over time only for coliform, pH, dissolved oxygen and BOD, and not for the nutrients that constitute agrichemicals.

estimates indicate that there has been deterioration in water quality in terms of BOD and agrichemicals from 1992 to 2005, although the increase in BOD levels is modest in comparison to the rise in the levels of agrichemicals in water. Next, we discuss our demographic data for India.

Demographic Data

Child health outcomes, maternal, paternal and household characteristics are available from three rounds of the Indian National Family Health Survey (NFHS). These are the DHS for India and in addition to the maternal risk factors and demographic characteristics that are asked of all women between the ages of 15-49, these data contain detailed reproductive histories on year and month of delivery of every child born, gender of the child, and information on height-for-age and weight-for-age z scores for children less than age five. Table 2 presents summary statistics of child-specific, womanspecific, husband-specific, household-specific and state-specific characteristics in our sample. 12 At each level (child-specific, women-specific, household-specific, and state-specific), results are reported for unique observations. Hence for example, while the child-specific variables are reported at the childlevel (for children less than or equal to five years of age), women-specific variables are reported for each woman so that the number of births a woman has had does not weight her importance in the summary statistics. Further, although the DHS contain many thousands of child observations in each year, our sample is more limited in number due to missing child and parental characteristics and missing values in the water quality data in 1998. These missing values in the water data are not systematic; they arise primarily because of administrative re-structuring at CPCB that led to the elimination of certain

11

¹² Information on per-capita net state domestic product was obtained from the Economic Organization and Public Policy Program (EOPP) database from the London School of Economics. Data on rainfall, malaria cases, tuberculosis (TB) deaths, external deaths, and live births/conceptions were obtained from various years of the *Vital Statistics of India*. Data on air temperature, average distance from sea and average elevation were obtained from India Agriculture and Climate Data Set (Dinar *et al.* 1998), rice and wheat cropped area and information on crop sowing months were obtained from the *Statistical Abstract of India* and *Area and Production of Principal Crops in India*, various years. Wheat and rice yields were obtained from the Directorate of Economics and Statistics, Department of Agriculture, various years.

branches and the creation of new states in India that required further re-structuring at regional CPCB offices that monitor water quality.

In general, there is a decreasing trend evident in terms of order of birth and an increasing trend in child health as indicated by size of the child at birth. Across the DHS rounds, women are older and more literate. Work probabilities for women, especially self-employment probabilities, improve over time. There is also evidence of a modest increase in woman's general health as measured by body mass index (this information was not collected in 1992). Log number of conceptions in a month, which is proxied by number of live births per month dated retrospectively by nine months, shows a gradual increase over time.

Husband-specific characteristics in Table 2 show similar trends. Husband's age increases over time as does literacy (measured by a declining proportion of husbands with no education). Further, household-specific measures indicate that more than three quarters of our sample is rural in the early years of our data, there is declining male headship, about 80 percent of households are Hindu, and between 21 – 29 percent belong to the disadvantaged caste group in India (Scheduled Caste/Scheduled Tribes). General infrastructure measures and proxies for wealth also show improvements over time. Access to electricity has increased by about 29 percent from 1992 to 2005, and there have been increases in ownership of consumer durables such as refrigerators, televisions, and motorcycles. Piped water (a relatively safe source) is the origin of drinking water for only about 28 to 35 percent of the sample over time. State-specific measures reveal that per capita state income has increased by about 34 percent over the period of analysis – a substantial increase that may, in part, reflect the 1991 liberalization that India underwent. Finally, although there is no evidence of an increase in the number of malaria cases and TB deaths, rice and wheat yields rose over the years we examine.

¹³ For some of the variables, the means for 1998 appear skewed in comparison to 1992 and 2005. This is because we have a relatively large number of missing observations in the monthly water quality data leading to imperfect matches between the demographic data and the water information in that year.

Table 2 describes the exogenous determinants of child health. For purposes of estimation, these measures are merged with the water quality data on the basis of each child's state of residence and year and month of conception. Year and month of conception are determined retrospectively using information on year and month of birth of the child, assuming a nine month gestation cycle. The resulting data set has child health outcomes matched with agrichemical presence in the month of conception, BOD in the month of conception and other characteristics described in Table 2. We consider first trimester impacts since there is evidence that exposure at this juncture in fetal development is most critical. In particular, Manassaram *et al.* (2006) notes that nitrates and nitrites may travel through the placenta to affect the fetus in the first trimester. The separation of blood circulation between mother and fetus is achieved only from the beginning of the second trimester of pregnancy when the placental membrane becomes adequately developed. To check sensitivity of results to toxin exposure at different points in the gestation cycle, we also consider the impact of second and third trimester levels of agrichemicals and BOD on measures of child health. These results are discussed below.

We turn next to a description of the child outcomes we study. These are reported in Table 3 and include infant mortality (child was born alive but died at or less than eleven months of age), neo-natal mortality (child was born alive but died in the first month of life), and post-natal mortality (child was born alive but died between the first and eleventh month of life). *In utero* exposure to toxins is believed to have the strongest impact on neo-natal mortality; post-natal mortality is more likely to result from diseases (diarrhea), poor nutrition, child living circumstances/environment or accidents. Standardized evaluators of stunting (height-for-age z score for children less than five years) and being under-weight

_

¹⁴ The average woman has lived in her place of residence between sixteen to twenty years in these data. Hence bias from endogenous migration is not likely to be an issue. Ideally, we would have liked to merge on the basis of child's state of birth to control for migration, but this information is not collected in the DHS. Further, the long years of residence give us confidence that migration is less of a concern here.

¹⁵ Alternative specifications using a 10 month gestation cycle (40 weeks) did not result in appreciably different results. Further, if chemical exposure reduces gestation length, then our results would underestimate the impact of water toxins (conservative bias).

(weight-for-age z scores for children less than five years) are also analyzed.¹⁶ Summary statistics for these outcomes are presented in Table 3.

Estimates in Table 3 reveal that although infant mortality has declined in our sample, neo-natal mortality is its primary component and has declined relatively less. The height-for-age z score shows that the average Indian child was stunted (the threshold for stunting is less than 2 standard deviations from the mean) in 1992, but there has been a gradual improvement in this measure from then on. Similarly, the average Indian child scored well below conventionally accepted threshold levels for adequate nutrition in terms of the weight-for-age measure in 1992. Again, there has been improvement in this measure, mainly from 1992 to 1998.

VI. Results

Two Stage Least Squares

Results from the first stage in equation (2) for fertilizer agrichemicals and BOD are reported in Table 4. The first two columns of Table 4 show results in which the indicator of the presence of fertilizer agrichemicals in the first month is averaged at the state, year, and month level. BOD does not require this transformation as it is already in linear form. Since we have information on cropped area under rice in both the *kharif* and summer seasons, we use both variables for estimation purposes (as noted above, *kharif* rice is the larger crop). Table 4 reports that the rice instruments and the wheat instrument are significant in the first column. The rice and wheat instruments have a positive effect on the endogenous variable, which is consistent with our hypothesis that agrichemical levels peak in these states during the application months.

.

¹⁶ Deaton and Dreze (2009) note that for Indian children, the weight-for-age z score is the preferred measure of under-weight (as opposed to weight-for-height).

¹⁷ Without this averaging, the dependent variable in the first stage is non-linear. Angrist and Krueger (2001) show that a two-stage model where the first stage is estimated using non-linear techniques is suspect since the model is essentially identified from the non-linearity.

Given the nature of these data, it is likely that the effects of the rice and wheat instruments are contaminated with time and state-level heterogeneity. A way to control for this is to include month and year dummies, region dummies, and interactions of month and region dummies and year and region dummies. This also accounts for omitted variables at these levels whose exclusion may bias results. The second column of Table 4 shows results with the inclusion of these additional controls. The instruments remain significant and explain about 26 percent of the variation in agrichemical presence. The F-statistic on the identifying instruments in the second column of Table 4 is above 10, the rule-of-thumb threshold value for sufficient strength. This is consistent with the corresponding *p*-value which strongly rejects the null hypothesis that the identifying instruments are jointly insignificant. The results in Table 4 indicate that the rice and wheat instruments are significant determinants of the seasonal presence of agrichemicals in water.

The third and fourth columns of Table 4 report first stage results for the general measure of water quality, BOD. The rice and wheat instruments have positive effects in Table 4, but as evident from the third column, only the wheat instrument is a significant determinant of BOD levels. Inclusion of controls for state and time heterogeneity in the fourth column results in the wheat instrument becoming statistically insignificant. As noted above, BOD is influenced by the level of agrichemical nutrients from soil-run off, but also by other sources of water pollution such as industrial waste and faulty wastewater treatment facilities. In fact, the major point sources of BOD are industries such as paper and pulp processing, printing, and wastewater treatment in textile and fabric industries (Smith 1989). Since our identifying instruments are primarily agricultural-based, and because agrichemicals form a relatively minor constituent of BOD, the instruments perform less well in predicting BOD levels in our sample. We report tests for weak instruments in the two stage least squares (TSLS) results below.

Our main results from the second stage of the TSLS model are presented in Table 5. Before we discuss these results we note that in order to implement a linear instrumental variables model, non-linear outcomes (infant mortality, neo-natal mortality, and post-natal mortality) are averaged to the state, year and month levels (height-for-age and weight-for-age are already in linear form and hence do not require this transformation). Linear TSLS is the preferred econometric method since it has the advantage of reporting tests of instrument validity.

Table 5 reports the instrumental variables results for the impact of average fertilizer presence in water in the month of conception on child health outcomes. Sample sizes differ across infant mortality and its components since children who have not reached the age of 12 months, for example, are excluded from the infant and post-natal mortality regressions. Until the child exits the hazard period, it is not possible to know whether he/she will die before the cut-off age. In a similar vein, neo-natal mortality includes only those children who have crossed one month of age. Height-for-age and weight-for-age z scores are recorded for all children who are less than five years of age; however, as evident from the table, height-for-age is missing for a small number of children.

We begin by noting that the Anderson-Rubin Wald test that the coefficients on the endogenous regressors are jointly equal to zero (test of weak instruments) is rejected at the 10 percent level in all but one model of Table 5. The first column reports that fertilizer agrichemicals have a strong positive impact on infant mortality. Estimates indicate that a unit increase in the average measure of such agrotoxins increases average infant mortality by 0.08 units. This means that for a 10 percent increase in the average level of agrichemicals in water, average infant mortality increases by 4.64 percent. The second column of Table 5 shows that most of this effect comes from the adverse consequences on neo-natal mortality. The coefficient in this column indicates that for a 10 percent increase in the average level of

fertilizer in water, average neo-natal mortality increases by 6.22 percent. Table 5 shows that BOD is not significantly associated with infant or neo-natal mortality.

Table 5 also reports the instrumental variables results for the impact of average fertilizer presence in water in the month of conception on long-run child health outcomes and as expected, agrichemicals have negative influences on height-for-age and weight-for-age z scores. Focusing on the weight-for-age z score which is considered to be a comprehensive measure of child health in India (Deaton and Dreze 2009), estimates indicate that for a 10 percent increase in the level of agrichemical toxins in water, weight-for-age z scores as of age five decline by about 0.014 standard deviations. This is a significant but not overly large effect. Even though the magnitude of the effect is modest, it is striking that exposure in the first month has such long-lasting negative effects on child health.¹⁸

The remaining tables in the results section consider different specifications of the main TSLS results in Table 5. Table 6 reports disaggregated regressions for neo-natal mortality for the following sub-samples: uneducated versus educated women, rural versus urban areas, and poor versus rich households. It is apparent that the negative consequence of fertilizer toxins is particularly evident among uneducated women; although educated women may also be exposed to agrichemical toxins through drinking water, these results indicate that they are able to engage in behaviors that counteract some of the negative *in utero* consequences of exposure to tainted water; educated women may be more aware of the benefits of filtration and chlorination, for example. Next, in keeping with increased exposure from agriculture, the harmful impact of agrichemicals on neo-natal mortality is most evident in rural areas. There may be spillovers to urban areas as suggested by the significance of the fertilizer coefficient in column four, but the impact is larger in rural areas. The beneficial impact of BOD on neo-

. .

¹⁸ We also tested whether the presence of fertilizer agrichemicals in water affects the likelihood that a child's gender is male (males *in utero* are reported to be more susceptible to environmental risks than are females - Garry *et al.* 2002, Sanders and Stoecker 2011, Drevenstedt *et al.* 2008). The results were in the hypothesized direction, with gender less likely to be male in the presence of more water toxins, but were statistically insignificant (results available on request).

natal mortality in urban areas is likely picking up the positive impact of increased income from economic activity. Finally, using proxy measures of wealth to differentiate between poor and rich households, estimates in Table 6 reveal that it is the poor who are particularly susceptible to the detrimental impacts of agro-contaminants. Rich households experience some negative effects of BOD, possibly reflecting their concentration in non-agricultural occupations. The results in Table 6 underscore that the negative health implications of fertilizer agrichemicals are strongest among the most disadvantaged, specifically the children of uneducated poor women living in rural India.

To investigate whether exposure beyond the month of conception has added effects on child well-being, the next set of tables report the child health impacts of first, second, and third trimester exposure to agrichemicals and BOD in water. These results are reported in Tables 7A, 7B and 7C; it is clear from these results that although infant mortality is affected by exposure in all trimesters, the largest impact is in the first trimester. Neo-natal mortality is significantly affected by the presence of agrichemicals in water in the third trimester; note however that the corresponding fertilizer coefficients in the first and second trimesters are on the margin of being significant as well. Moreover, the magnitude of the agrichemical variable on infant and neo-natal mortality is only slightly different than its corresponding value in Table 5. Consistent with results above, there are no significant effects on post-natal mortality. Among the anthropometric indicators, height-for-age is negative affected by agrichemical exposure, but only in the first trimester. Although anthropometric measures are thought to be most impacted in the third trimester, the negative effect of agrichemicals is evident only in the first trimester in these data. In summary, these results indicate that there is an additional modest effect from prolonged exposure to water toxins, but not for all of the child health measures we examine.

Ordinary Least Squares

We end this section by reporting ordinary least squares (OLS) models that treat fertilizer agrichemicals and BOD exogenously. This corresponds to the empirical specification in equation (1); the OLS results are reported in Appendix Table 1. Our rationale for using the TSLS method is measurement error which leads to attenuation bias, but we are also concerned about bias in the non-classical sense. For measurement error to be purely classical, we would have to assume that monitoring stations were located in a manner that was independent of toxicity levels. For example, if stations were first placed in the most polluted areas, OLS estimates would be biased not due to attenuation alone, but also from the well-recognized problem of non-random "program" placement. However, the estimates in Appendix Table 1 suggest that most of the bias is in the classical sense, as the OLS coefficients on the agrichemicals variable and BOD in this table are not significantly different from zero.

VII. Robustness Checks

The checks conducted in this section ascertain the robustness of the identifying instruments and demonstrate that they have no indirect effects on child health measures through correlation with omitted variables. Table 8 presents first stage tests that check for correlation of the identifying instruments with the number of accidental deaths, access to prenatal or antenatal care provided by a doctor, log number of conceptions in a month, household income, rainfall, air temperature, diseases, mother's and father's education, asset ownership, residence in rural or urban areas, number of siblings, and consumption.

Accidental deaths¹⁹ is used as a falsification test: the identifying instruments should not have any effects on deaths not linked to fertilizer agrichemicals or BOD. Access to prenatal or antenatal care is a proxy for investments in infant health. The number of conceptions in a month is a test of selection in that we need to ensure that the timing of conception is not related to the instruments. If households timed conception, then conception could be endogenous to the instruments since the sample of children born

_

¹⁹ Defined as deaths from bites/stings, accidental burns, falls, drowning, accidental poisoning, transport and other accidents, suicides and homicides.

during the sowing period when fertilizer is applied would be systematically different as compared to children born at other times of the year. Rainfall and temperature test whether instruments are systematically correlated with weather outcomes. We also test for the correlation of instruments with diseases such as malaria and tuberculosis (TB) which may vary by season. Parental education, asset ownership, region of residence and number of siblings test whether the instruments predict preconception characteristics of households. The consumption indicator tests whether the instruments are correlated with food shortages that often precede the agricultural sowing months. As evident from Table 8, the rice and wheat instruments have no statistical impact on most outcomes and the F-statistics as well as the corresponding *p*-values confirm this conclusion. The instruments are correlated with rainfall and temperature, but this is to be expected since it is precisely these characteristics that make certain months of the year more suitable for the planting of crops. In Table 9 that follows, we demonstrate that including rainfall and temperature in the second stage has little to no effect on the main results in Table 5, which continue to remain significant.

We continue the discussion of robustness checks by addressing omitted variables. For the identifying instruments to have indirect effects on child health through correlation with omitted variables, such variables would have to vary seasonally and by agricultural region in the same way that fertilizer concentrations vary seasonally and across regions. Weather-related natural phenomena such as average rainfall and air temperature, as well as the incidence of diseases such as malaria and TB may satisfy these conditions, and we verify the validity of our instruments with respect to these variables (Table 8 already showed that the instruments are not correlated with disease). In particular, air temperature may have independent effects on child health measures such as infant mortality conditional on rice and wheat instruments (for example, the likelihood of infant mortality may rise when temperatures are unseasonably warm, as noted in Burgess *et al.* 2011). The incidence of disease may

also vary seasonally and by regions and have indirect effects on child health through influencing mother's health in the year of conception. To account for the effects of air temperature and the incidence of disease, these variables are directly included in the second stage. Furthermore, if a "hungry season" immediately precedes crop sowing cycles, as is usually the case in agriculture, the timing of food shortages may independently impact the mother's health net of the identifying instruments (Table 8 already shows no systematic correlation between the instruments and consumption). We include retrospective information on wheat and rice yields (tons/hectare) in the second stage to adjust for such effects. Average elevation is also included in the second stage to control for market integration which may determine how widely food shortages are experienced at the state level. Finally, if women's labor increases during sowing cycles, this may also invalidate the exclusion restriction. Given the lack of information on hours worked in the DHS data, we include a full set of indicators on the types of work undertaken by women to control for these effects (note that many of these variables are already included in the main specifications discussed above). The results of these tests are reported in Table 9.

It is evident that the inclusion of average rainfall, air temperature, log number of malaria cases and TB deaths, log wheat and rice yields, and controls for woman's work do not change the main results in Table 5. The magnitude of fertilizer agrichemicals in response to the inclusion of the weather variables is about the same in its impact on infant mortality in Table 9 as in Table 5, and still significant. In terms of neo-natal mortality, agrichemical effects are also comparable and still measured with precision. Inclusion of malaria cases and TB deaths in the second stage decreases the magnitude of the effect of agrichemical toxins in the month of conception on infant mortality and neo-natal mortality (we should note that malaria and TB deaths are missing for 1989, 2003 and 2004; hence the samples are not strictly comparable). The impact of agrichemicals remains evident even with controls for food quantities (rice and wheat yields) and the types of work women engage in. BOD continues to have a

mostly insignificant effect in Table 9. These results in Table 9 corroborate the results reported above by demonstrating that the instruments are randomly assigned.²⁰

We conclude the robustness section by discussing results in Tables 10A and 10B which report additional falsification tests. In particular, Table 10A shows that child health outcomes are not significantly associated with agrichemical or BOD presence in water in the trimester before conception. Table 10B extends the time-span to show that there is mostly no effect on child health measures from agrichemicals and BOD in the six months preceding conception (BOD is found to have a marginally significant impact on neo-natal mortality, but that is the only instance). These tests provide further support for our main results and indicate that fertilizer toxins in water, particularly in the month of conception, have long-lasting implications for child health in India.

VIII. Conclusion and Implications for Policy

This analysis seeks to broaden our understanding of the health effects of fertilizer use on a population that is particularly vulnerable to environmental abuses: infants and young children in a developing country. India provides a uniquely favorable environment in which to analyze this effect, given that its particular soil endowment and geography lead to both seasonal and regional variation in fertilizer agrichemical contamination of ground and surface water. It is this differing timing of the planting seasons across India's states, and the differing seasonal prenatal exposure of infants and children to agrichemicals, which we exploit to identify the impact of water contamination on child health.

Our TSLS analysis of the effects of agrichemicals on different measures of child health provides notable results. We find that a 10 percent increase in the average level of fertilizer chemicals in water in

²⁰ Other checks that were implemented included interacting agrichemicals with sources of drinking water and interacting agrichemicals with the rural dummy. The results were not significantly different from zero. We also checked to see whether gains from access to fertilizer disproportionately affected the rich or middle income – again, there was no evidence that this was the case.

the month of conception increases the likelihood of infant mortality by about 4.6 percent. Neo-natal mortality is particularly susceptible to agro-contaminants in water as a 10 percent increase in water toxins from fertilizers is significantly associated with about a 6.2 percent increase in mortality within the first month. These are relatively large effects, but they are consistent with the findings in Cutler and Miller (2005) and Galiani *et al.* (2005), which also document a substantial impact of clean water on child health.²¹

The findings of this research highlight the tension between greater use of fertilizer to increase yields and the negative child health effects that result from such use. In order to reduce harm from agrichemical exposure, it may be necessary to focus on generating only reasonable yield amounts by curtailing the use of synthetic chemical additives. Strategies to reduce the harmful effects of water toxins while still ensuring a sufficient level of output include increasing reliance on organic fertilizers (compost, manure), and adoption of alternative farming techniques that improve soil productivity without the application of inorganic supplements, such as crop-rotation. Implementing programs to raise consciousness and bolster the nutrition of mothers who are most exposed may also counteract some of the negative impacts. Finally, early health intervention programs that provide nutrient supplements to low-birth weight babies may be beneficial. These strategies are likely to be costly for cash-strapped developing countries such as India. However, their adoption may prove vital to slowing the unintended health consequences of the widespread use of inorganic fertilizers in Indian agriculture.

More broadly, the line of research we pursue in this paper raises a fundamental question regarding one's assessment of the Green Revolution and its contributions to well-being. By significantly increasing agricultural output in developing countries, Green Revolution techniques

_

²¹ In particular, Cutler and Miller (2005) argue that the adoption of clean water technologies such as filtration and chlorination was responsible for up to 75 percent of infant mortality reduction in early twentieth century America. Galiani *et al.* (2005) conclude that privatization of water supply in low-income areas of Argentina reduced the mortality of children under age 5 by 26 percent.

unquestionably raised living standards and improved the caloric intake and nutrition of millions of people. However, these results indicate that an assessment focusing on only increased agricultural output excluding the cost of environmental contamination is incomplete. The Green Revolution represented a significant change in the agricultural production system: production based on indigenous seeds and organic inputs was, over time, replaced with an agricultural system reliant on hybrid seeds and agrichemicals. The implementation of this system was widespread across the developing world, and policymakers continue to advocate for increased use of agrichemicals by farmers. While we are not the first analysts to document the environmental impact of this fundamental shift in agricultural production, to the best of our knowledge this paper is one of the first attempts to credibly identify the effect of agrichemicals on child health in a developing country. However, the paper examines only one, relatively short-term, impact of Green Revolution technologies on child health in a single country. Much research remains to be done to investigate whether there are any significant, negative long-term consequences for adult health outcomes of the implementation of these techniques, in India as well as in other countries.

References

- Almond, Douglas (2006), "Is the 1918 Influenza Pandemic Over? Long-term Effects of *In Utero* Influenza Exposure in the Post-1940 U.S. Population," *Journal of Political Economy* 114(4): 672-712.
- Almond, Douglas and Janet Currie (2010), "Human Capital Development Before Age Five," *Handbook of Labor Economics*, Vol. 4B (Elsevier): 1315-1486.
- Almond, Douglas, Lena Edlund, and Mårten Palme (2009), "Chernobyl's Subclinical Legacy: Prenatal Exposure to Radioactive Fallout and School Outcomes in Sweden," *Quarterly Journal of Economics* 124(4): 1729-1772.
- Angrist, Joshua D., and Alan B. Krueger (2001), "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments". *Journal of Economic Perspectives* 15(4): 69-85.
- Arceo-Gomez, Eva O., Rema Hanna and Paulina Oliva (2012), "Does the Effect of Pollution on Infant Mortality Differ Between Developing and Developed Countries? Evidence from Mexico City," NBER Working Paper 18349.
- Bardhan, Pranab and Dilip Mookherjee (2011), "Subsidized Farm Input Programs and Agricultural Performance: A Farm-Level Analysis of West Bengal's Green Revolution, 1982-1995," *American Economic Journal: Applied Economics* 3(4): 186-214.
- Behrman, Jere, and Mark Rosenzweig (2004), "Returns to Birthweight," *Review of Economics and Statistics* 86(2): 586-601.
- Burgess, Robin, Olivier Deschenes, Dave Donaldson, and Michael Greenstone (2011), "Weather and Death in India," Mimeo.
- Carr, Genevieve M., and James P. Neary (2008), "Water Quality for Ecosystem and Human Health," 2nd Edition, United Nations Environment Program Global Environment Monitoring System (GEMS)/Water Program.
- Chakravarti, A.K (1973), "Green Revolution in India," *Annals of the Association of American Geographers* 63(3): 319-330.
- Chand, Ramesh (2001), "Wheat Exports: Little Gain," *Economic and Political Weekly* 36(25): 2226-2228.
- Chattopadhay, G.N., B.C. Roy, and R. Tirado (2009), Subsidising Food Crisis. Bangalore: Greenpeace.
- Chay, Kenneth Y. and M. Greenstone (2003), "The Impact of Air Pollution on Infant Mortality: Evidence from the Geographic Variation in Pollution Shocks Induced By a Recession," *Quarterly Journal of Economics* 118(3): 1121-1167.

- Currie, Janet and Tom Vogl (2012), "Early-Life Health and Adult Circumstance in Developing Countries," NBER Working Paper 18371.
- Currie, Janet and Reed Walker (2011), "Traffic Congestion and Infant Health: Evidence from E-Z Pass," *American Economic Journal: Applied Economics* 3(1): 65-90.
- Cutler, D., and G. Miller (2005), "The Role of Public Health Improvements in Health Advances: The Twentieth Century United States," *Demography* 42(1): 1-22.
- Cutler, D., A. Deaton, and A. Lleras-Muney (2006), "The Determinants of Mortality," *Journal of Economic Perspectives* 20(3): 97-120.
- Deaton, Angus and Jean Drèze (2009), "Food and Nutrition in India: Facts and Interpretations," *Economic & Political Weekly* 44(7): 42-65.
- Dinar, Ariel, Robert Mendelsohn, Robert Evenson, Jyoti Parikh, Apurva Sanghi, Kavi Kumar, James McKinsey, Stephen Lonergan (1998), "Measuring the Impact of Climate Change on Indian Agriculture," World Bank Technical Paper No. 402.
- Drevenstedt, Greg, E. Crimmins, S. Vasunilashorn, and C. Finch (2008). "The Rise and Fall of Excess Male Infant Mortality," *Proceedings of the National Academy of Sciences* 105(13): 5016-5021.
- Ebenstein, Avraham, Zhang, Jian, McMillan, Margaret, and Kevin Chen (2011), "Chemical Fertilizer and Migration in China," NBER Working Paper 17245.
- Ebenstein, Avraham (2012), "The Consequences of Industrialization: Evidence from Water Pollution and Digestive Cancers in China," *Review of Economics and Statistics* 94(1): 186-201.
- Foster, Andrew, and Sheetal Sekhri (2008), "Water Markets, Local Networks, and Aquifer Depletion," Mimeo.
- Galiani, Sebastian, Paul Gertler, and Ernesto Schargrodsky (2005), "Water for Life: The Impact of the Privatization of Water Services on Child Mortality," *Journal of Political Economy* 113(1): 83-120.
- Garry, V.F, M.E. Harkins, L.L. Erickson, L.K. Long-Simpson, S.E. Holland, and B.L. Burroughs (2002), "Birth Defects, Season of Conception, and Sex of Children Born to Pesticide Applicators Living in the Red River Valley of Minnesota, USA," *Environment and Health Perspectives* 110 (Supp. 3): 441-449.
- Greenstone, Michael and Rema Hanna (2011), "Environmental Regulations, Air and Water Pollution, and Infant Mortality in India," NBER Working Paper 17210.
- Heeren, G.A., J. Tyler, and A. Mandeya (2003), "Agricultural Chemical Exposures and Birth Defects in the Eastern Cape Province, South Africa: A Case-Control Study," *Environmental Health: A Global Access Science Source:* 2-11.
- Jayachandran, Seema (2009), "Air Quality and Early-Life Mortality: Evidence from Indonesia's Wildfires," *Journal of Human Resources* 44(4): 916-954.

- Maccini, Sharon and Dean Yang (2009), "Under the Weather: Health, Schooling, and Economic Consequences of Early-Life Rainfall," *American Economic Review* 99(3): 1006-1026.
- Manassaram, Deana M., Lorraine C. Backer and Deborah M. Moll (2006), "A Review of Nitrates in Drinking Water: Maternal Exposure and Adverse Reproductive and Developmental Outcomes," Environmental Health Perspectives 114(3): 320-327.
- McEniry, M. and A. Palloni (2010), "Early Life Exposures and the Occurrence and Timing of Heart Disease among the Older Adult Puerto Rican Population," *Demography* 47(1): 23-43.
- Pitt, M., M. Rosenzweig, and M.N. Hassan (2006), "Sharing the Burden of Disease: Gender, the Household Division of Labor and the Health Effects of Indoor Air Pollution," Mimeo.
- Restropo, M., N. Monoz, N. Day, J. Parra, L. de Romero, and X. Nguyen-Dinh (1990), "Prevalence of Adverse Reproductive Outcomes in a Population Occupationally Exposed to Pesticide in Colombia," *Scandinavian Journal of Work, Environmental, and Health* 16(4): 232-238.
- Sanders, Nicholas J. and Charles F. Stoecker (2011), "Where Have All the Young Men Gone? Using Gender Ratios to Measure Fetal Death Rates," NBER Working Paper 17434.
- Sen, Amartya (1977), "Starvation and Exchange Entitlements: A General Approach and its Application to the Great Bengal Famine," *Cambridge Journal of Economics* 1:33-59.
- Smith, Brent (1989), "BOD and COD: Sources and Reduction Strategies," Manuscript.
- Tewatia, R.K., and T.K. Chanda (2005), "Fertilizer Use by Crop," in Fertilizer Use by Crop in India. Rome: Food and Agriculture Organization of the United Nations.
- Tonn, Steve (2004), "Pollution Prevention Lawn Care and Lakes," University of Nebraska Lincoln Mimeo.
- Winchester, P.D., J. Huskins, and J. Ying (2009), "Agrichemicals in Surface Water and Birth Defects in the United States," *Acta Paediatrica* 98: 664-66.
- Zhang, Jing (2012), "The Impact of Water Quality on Health: Evidence from the Drinking Water Infrastructure Program in Rural China," *Journal of Health Economics* 31: 122-134.

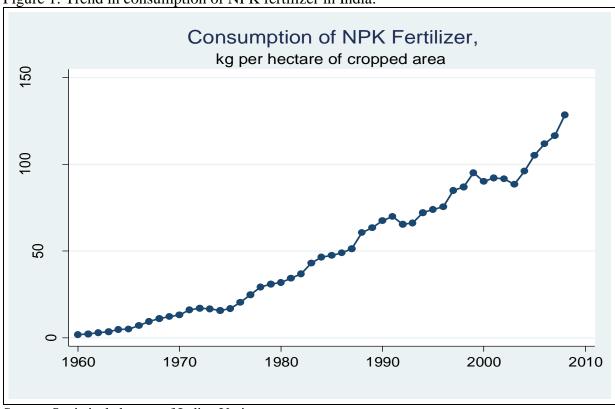


Figure 1: Trend in consumption of NPK fertilizer in India.

Source: Statistical abstract of India. Various years.

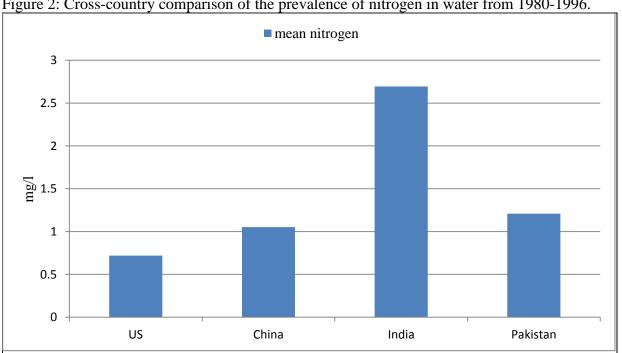


Figure 2: Cross-country comparison of the prevalence of nitrogen in water from 1980-1996.

Source: GEMStat global water quality database. Nitrogen is measured as the sum of nitrates (mg/l) and nitrites (mg/l). Available at: http://gemstat.org/queryrgn.aspx. Accessed on October 24, 2011.

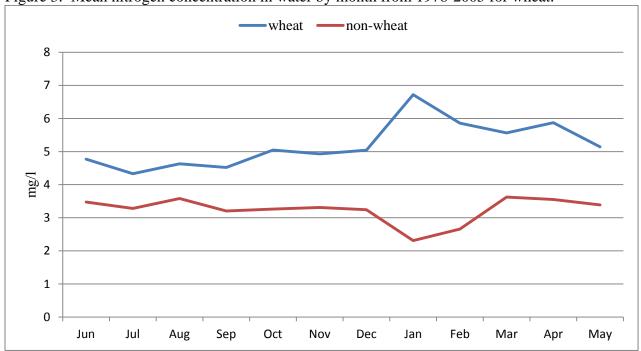


Figure 3: Mean nitrogen concentration in water by month from 1978-2005 for wheat.

Notes: Authors' calculations from CPCB data at the national level. Wheat states include Punjab, Haryana, Gujarat, Bihar, Madhya Pradesh and Uttar Pradesh. Nitrogen is measured as nitrogen kjeldahl (mg/l).

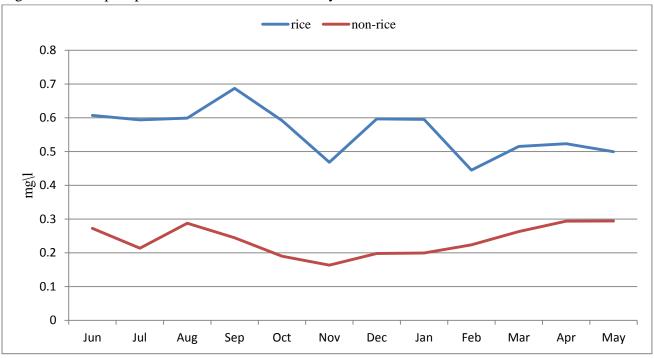


Figure 4: Mean phosphate concentration in water by month from 1978-2005 for rice.

Notes: Authors' calculations from CPCB data at the national level. Rice states include Assam, Andhra Pradesh, Tamil Nadu, Kerala, Orissa and West Bengal. Phosphate is measured in mg/l.

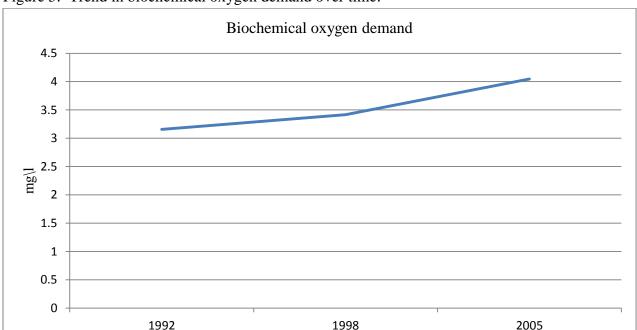


Figure 5: Trend in biochemical oxygen demand over time.

Notes: Author's calculations from CPCB data at the national level. Figure shows mean level over all available states for each of the three DHS years analyzed. Biochemical oxygen demand is measured in milligrams (mg) per liter (l).

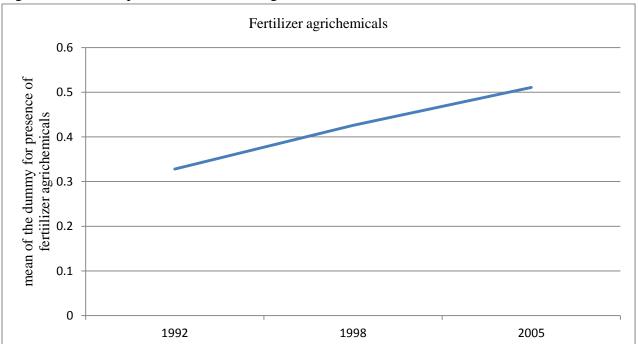


Figure 6: Trend in presence of fertilizer agrichemicals in water over time.

Notes: Author's calculations from CPCB data at the national level. Table reports mean of the dummy for the presence of fertilizer agrichemicals in water over all available states for each of the three DHS years analyzed.

Table 1: Means and standard deviations of BOD and fertilizer agrichemicals by year.

Pollutant/Chemical	1992	1998	2005
Water Pollutant			
Level of biochemical oxygen	3.156	3.416	4.047
demand in month of conception	(3.613)	(5.285)	(9.477)
Level of biochemical oxygen	3.150	3.420	4.050
demand in first trimester	(3.600)	(5.290)	(9.410)
Level of biochemical oxygen	3.150	3.420	4.020
demand in second trimester	(3.590)	(5.290)	(9.410)
Level of biochemical oxygen	3.150	3.420	4.040
demand in third trimester	(3.620)	(5.280)	(9.530)
Fertilizer agrichemicals			
Dummy for presence of fertilizer	0.328	0.426	0.511
chemicals in month of conception	(0.470)	(0.495)	(0.500)
Dummy for presence of fertilizer	0.329	0.426	0.512
chemicals in the first trimester	(0.470)	(0.494)	(0.499)
Dummy for presence of fertilizer	0.329	0.426	0.512
chemicals in the second trimester	(0.469)	(0.494)	(0.499)
Dummy for presence of fertilizer	0.329	0.426	0.510
chemicals in the third trimester	(0.469)	(0.494)	(0.499)

Notes: Author's calculations from CPCB data merged with DHS data. Weighted to national level with weights provided by the DHS. Standard deviations reported in parentheses. Biochemical oxygen demand is measured in mg/l units. Total number of observations in 1992, 1998, and 2005 is 2652, 4278, and 5323, respectively.

Table 2: Means and standard deviations of exogenous characteristics by year.

Variables	1992	1998	2005
Child-specific			
Order of birth	3.030	2.978	2.836
	(1.954)	(1.971)	(1.810)
Dummy for child was nursed	0.983	0.612	0.969
	(0.128)	(0.488)	(0.173)
Male child	0.513	0.499	0.492
	(0.500)	(0.500)	(0.500)
Dummy for child was large at	0.143	0.134	0.211
Birth	(0.350)	(0.341)	(0.408)
Dummy for child was average at	0.675	0.608	0.563
Birth	(0.469)	(0.488)	(0.496)
Age of child	2.531	2.526	2.786
	(1.686)	(1.665)	(1.659)
Number of siblings	2.627	2.644	2.608
-	(2.047)	(2.192)	(2.112)
Woman-specific			
Woman's age	29.251	31.447	33.804
C	(6.422)	(7.025)	(7.352)
Dummy for woman is literate	0.303	0.334	0.362
	(0.459)	(0.472)	(0.480)
Dummy for woman is currently	0.337	0.399	0.424
working	(0.473)	(0.490)	(0.494)
Dummy for woman works in	0.226	0.655	0.107
farming, fishing, hunt. or logging	(0.418)	(0.475)	(0.310)
Woman works for family member	0.426	0.403	0.483
	(0.495)	(0.491)	(0.500)
Woman works for someone else	0.486	0.493	0.374
	(0.500)	(0.500)	(0.484)
Dummy for woman is self-	0.088	0.104	0.142
employed	(0.284)	(0.306)	(0.350)
Woman's body mass index		19.890	20.417
		(3.439)	(3.825)
Dummy for woman consumes		0.285	0.319
fruits daily or weekly		(0.451)	(0.466)
Dummy for woman consumes		0.961	0.979
green vegetables daily or weekly		(0.194)	(0.145)
Dummy for woman consumes		0.245	0.285
eggs daily or weekly		(0.430)	(0.451)
Dummy for woman consumes		0.285	0.195
chicken/meat/fish daily or weekly		(0.452)	(0.396)

Table 2: Means and standard deviations of exogenous characteristics by year continued.

1 abic 2. Wealts and standard deviat	rons of enogenous er	taracteristics of Jear com	tillaea.
Dummy for woman smokes		0.022	0.028
		(0.146)	(0.164)
Dummy for woman drinks		0.025	0.028
alcohol		(0.155)	(0.164)
Number of living children	3.399	3.631	3.611
woman has	(1.671)	(1.795)	(1.725)
Number of children five years	1.752	1.311	0.963
and under	(1.425)	(1.289)	(1.115)
Dummy for had prenatal care or	0.168	0.093	0.106
antenatal check-up with doctor	(0.374)	(0.290)	(0.308)
Husband's age	35.049	37.908	39.752
	(7.596)	(8.944)	(8.862)
Dummy for husband has	0.386	0.326	0.332
no education	(0.487)	(0.469)	(0.471)
Dummy for husband has	0.255	0.207	0.171
some or all primary school	(0.436)	(0.405)	(0.376)
Dummy for husband has	0.234	0.222	0.391
some secondary school	(0.424)	(0.416)	(0.488)
Dummy for husband has comp.	0.125	0.245	0.101
secondary school or higher	(0.331)	(0.430)	(0.301)
Dummy for husband works	0.976	0.975	0.982
outside the home	(0.153)	(0.156)	(0.130)
Dummy for husband works in	0.444	0.541	0.506
farming, fishing, hunt., or logging	(0.497)	(0.498)	(0.500)
Years lived in place of residence	16.312	17.298	19.605
	(13.729)	(12.653)	(13.830)
Place of residence: capital, large	0.147	0.119	0.164
city or small city	(0.354)	(0.324)	(0.370)
Place of residence: town	0.077	0.113	0.107
	(0.266)	(0.316)	(0.309)
Place of residence: countryside	0.777	0.769	0.729
	(0.417)	(0.422)	(0.444)
Log number of conceptions in a	7.577	8.096	8.155
month	(6.378)	(5.998)	(5.984)
Household-specific			
Rural household	0.777	0.768	0.729
	(0.416)	(0.422)	(0.445)
Age of household head	43.231	43.956	43.769
	(13.782)	(13.098)	(11.706)
Dummy for household has a	0.951	0.954	0.908
male head	(0.215)	(0.210)	(0.290)
Dummy for household	0.807	0.813	0.822
religion is Hinduism	(0.395)	(0.390)	(0.382)
Dummy for household	0.152	0.148	0.140
religion is Islam	(0.359)	(0.356)	(0.347)
Dummy for household belongs to	0.210	0.289	0.290
Scheduled Caste/Scheduled Tribe	(0.408)	(0.453)	(0.454)

Table 2: Means and standard deviations of exogenous characteristics by year continued.

Variables	1992	1998	2005
Dummy for household owns a	0.372	0.346	0.308
radio or transistor	(0.483)	(0.476)	(0.462)
Dummy for household	0.178	0.293	0.415
owns a television	(0.383)	(0.455)	(0.493)
Dummy for household	0.047	0.080	0.116
owns a refrigerator	(0.211)	(0.272)	(0.321)
Dummy for household	0.077	0.104	0.155
owns a motorcycle	(0.267)	(0.306)	(0.362)
Dummy for household	0.010	0.012	0.017
owns a car	(0.099)	(0.109)	(0.131)
Dummy for household has	0.472	0.540	0.611
electricity	(0.499)	(0.498)	(0.488)
Source of drinking water: piped	0.281	0.322	0.348
Water	(0.450)	(0.467)	(0.476)
Source of drinking water: ground	0.283	0.440	0.503
Water	(0.451)	(0.496)	(0.500)
Source of drinking water: well	0.383	0.206	0.114
Water	(0.486)	(0.405)	(0.318)
Source of drinking water: surface	0.035	0.026	0.022
Water	(0.183)	(0.159)	(0.147)
Source of drinking water: rain-	0.017	0.007	0.012
water, tanker truck, other	(0.131)	(0.081)	(0.111)
Dummy for toilet facility is a	0.163	0.183	0.319
flush toilet	(0.370)	(0.387)	(0.466)
Dummy for toilet facility is a	0.070	0.106	0.032
pit toilet/latrine	(0.256)	(0.308)	(0.175)
Dummy for toilet facility is no	0.767	0.710	0.639
facility/bush/field	(0.423)	(0.454)	(0.480)
State-specific			
Per capita net state domestic	2002.816	2293.104	2678.071
product (base 1980-1981)	(799.224)	(1297.398)	(1467.965)
Rainfall in millimeters	136.435	62.136	91.968
	(133.589)	(85.901)	(108.515)
Rice crop area autumn and	0.174	0.191	0.195
winter norm. by state area	(0.143)	(0.152)	(0.159)
Rice crop area summer	0.014	0.026	0.017
normalized by state area	(0.022)	(0.041)	(0.034)
Wheat crop area winter	0.091	0.095	0.110
normalized by state area	(0.142)	(0.157)	(0.166)
Dummy for sowing months	0.583	0.461	0.244
for rice crop winter and autumn	(0.506)	(0.511)	(0.440)

Table 2: Means and standard deviations of exogenous characteristics by year continued.

Variable	1992	1998	2005
Dummy for sowing months for	0.110	0.088	0.049
rice crop summer	(0.321)	(0.290)	(0.221)
Dummy for sowing months for	0.367	0.740	0.462
wheat crop winter	(0.494)	(0.450)	(0.510)
Dummy for wheat growing	0.429	0.343	0.414
state	(0.508)	(0.486)	(0.504)
Dummy for rice growing state	0.341	0.464	0.285
	(0.486)	(0.511)	(0.462)
Average air temperature in	25.444	23.711	23.752
degrees Celsius	(3.911)	(2.884)	(5.378)
Log of average water	3.221	3.219	3.241
temperature in degrees Celsius	(0.343)	(0.234)	(0.168)
Number of malaria cases and TB	0.001	0.001	0.001
deaths normalized by state pop.	(0.003)	(0.002)	(0.002)
Number of external (bites, stings,	0.0001	0.0004	0.0001
accidents, suicides) deaths norm.	(0.0001)	(0.0001)	(0.0001)
Wheat yield (tons/hectare)	1.379	1.998	2.170
	(0.795)	(1.302)	(1.380)
Rice yield (tons/hectare)	2.789	3.639	3.173
	(2.785)	(3.217)	(1.792)
Average elevation in meters	345.158	329.112	334.989
	(107.734)	(118.483)	(122.121)

Notes: Author's calculations from CPCB and other data merged with DHS data. Weighted to national levels by weights provided by the DHS. Standard deviations in parentheses. Total number of observations in 1992, 1998, and 2005 is 2652, 4278, and 5323, respectively. Table reports statistics at the unique level for children (aged five years or lower), women, households, and states.

Table 3: Means and standard deviations of outcomes by year.

Outcomes	1992	1998	2005
Infant was born alive but died at or less	0.084	0.078	0.069
than eleven months (infant mortality)	(0.034)	(0.033)	(0.034)
Infant was born alive but died	0.053	0.050	0.046
in the first month (neo-natal mortality)	(0.023)	(0.023)	(0.025)
Infant was born alive but died between the	0.031	0.027	0.023
first and eleventh month (post-natal mortality)	(0.018)	(0.017)	(0.017)
Height-for-age z score for child	-2.182	-1.967	-1.746
	(1.683)	(1.662)	(1.558)
Weight-for-age z score for child	-2.176	-1.986	-1.936
	(1.235)	(1.298)	(1.153)

Notes: Authors' calculations. Weighted to national levels by weights provided by the DHS. Standard deviations in parentheses. Summary statistics for infant mortality are computed for all children who have reached twelve months in age (number of observations is 10497). Summary statistics for neonatal mortality are computed for all children who have reached one month of age (number of observations is 12201), and the sample for post-natal mortality includes children who are less than one month of age and those who have reached twelve months of age (number of observations is 11046). Summary statistics for Height-for-age and weight-for-age z scores are computed from a sample of children less than or equal to five years of age (number of observations is 10526, there are some missing observations for height-for-age).

Table 4: First-stage regressions on identifying instruments.

	Endogenous variable: A	Average of the dummy for	Endogenous variab	le: Log of the level of	
	presence of fertilizer a	grichemicals in month of	biochemical oxygen demand in month of		
	cono	ception	conc	reption	
Autumn rice crop area x Autumn rice sowing	0.834^{*}	0.881^*	0.445	1.095	
months	(0.452)	(0.503)	(0.493)	(0.689)	
Summer rice crop area x Summer rice sowing	3.636**	5.038***	1.654	4.138	
months	(1.711)	(1.495)	(1.161)	(2.699)	
Wheat crop area x Wheat sowing months	0.868***	0.698***	0.249*	0.166	
	(0.198)	(0.208)	(0.144)	(0.178)	
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	
Includes month and year dummies, region	NO	YES	NO	YES	
dummies, and their interactions					
R-squared	0.093	0.259	0.061	0.167	
F-statistic	6.450	12.160	1.330	1.140	
	[0.003]	[0.0001]	[0.292]	[0.356]	
Observations	12201	12201	12201	12201	

Notes: Weighted to national level with weights provided by the DHS. Table reports OLS regressions. Standard errors in parentheses are clustered by state. *p*-values in square brackets. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. F-statistics reported are for the identifying instruments. Regressions include a constant term and other characteristics as noted in the table. Restricted to sample with the largest number of observations for child outcomes.

Table 5: Instrumental variables effects of fertilizer agrichemicals and BOD on outcomes.

	Infant	Neo-natal	Post-natal	Height-for-age	Weight-for-age
	mortality	mortality	mortality	z score	z score
Average of the dummy for the presence of fertilizer	0.078**	0.068^{*}	0.001	-1.453 [*]	-0.606*
chemicals in month of conception	(0.031)	(0.038)	(0.008)	(0.809)	(0.360)
Log of the level of biochemical oxygen demand in	-0.037	-0.029	0.007	-0.579	-0.241
month of conception	(0.068)	(0.078)	(0.028)	(1.084)	(1.656)
Anderson-Rubin Wald test	21.200	13.160	0.370	11.910	7.810
	[0.0001]	[0.004]	[0.946]	[0.008]	[0.050]
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific characteristics, and state-specific characteristics	YES	YES	YES	YES	YES
Includes month and year dummies, region dummies, and their interactions	YES	YES	YES	YES	YES
Number of observations	10497	12201	11046	10402	10526

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models. *p*-values in square brackets. Infant mortality is computed for all children who have reached twelve months in age, neonatal mortality is computed for all children who have reached one month of age, and post-natal mortality includes children who are less than one month of age and those who have reached twelve months of age. Height-for-age and weight-for-age z scores are collected for children less than or equal to five years of age.

Table 6: Disaggregated instrumental variables effects of the presence of fertilizer agrichemicals and BOD in month of conception.

	*				*	
			Neo-nat	al mortality		
	Uneducated	Educated	Rural	Urban	Poor	Rich
	women	women	areas	areas	households	households
Average of the dummy for the presence of	0.077^{**}	0.029^{*}	0.077^*	0.064^{*}	0.072^{*}	-0.059
fertilizer chemicals in month of conception	(0.032)	(0.016)	(0.042)	(0.035)	(0.040)	(0.040)
Log of the level of biochemical oxygen demand in	-0.049	0.029	-0.054	-0.070*	-0.037	0.104^*
month of conception	(0.062)	(0.046)	(0.069)	(0.040)	(0.084)	(0.060)
Includes measures of crop area and crop sowing	YES	YES	YES	YES	YES	YES
months						
Includes child, woman and husband-specific	YES	YES	YES	YES	YES	YES
characteristics, and state-specific characteristics						
Includes month and year dummies, region	YES	YES	YES	YES	YES	YES
dummies, and their interactions						
Number of observations	7141	5060	9563	2638	11946	255

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models. Uneducated women have no schooling; educated women either have some or all primary school, some secondary school, or have completed secondary school or higher. Since ownership of assets such as televisions and bicycles is fairly widespread, rich households are defined as those who own a car (an asset whose ownership is fairly limited in these data); poor households are those who do not own a car.

Table 7A: Instrumental variables effects: impact of average of fertilizer agrichemicals and BOD in the first trimester months.

	Infant	Neo-natal	Post-natal	Height-for-age	Weight-for-age
	mortality	mortality	mortality	z score	z score
Average of dummy for presence	0.082^{*}	0.075	0.005	-1.831*	-0.563
of fertilizer in the first trimester	(0.046)	(0.049)	(0.010)	(1.093)	(0.612)
Level of biochemical oxygen	-0.260	-0.195	-0.051	0.098	4.870
demand in first trimester x 10 ⁻²	(0.387)	(0.378)	(0.066)	(1.637)	(4.701)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific	YES	YES	YES	YES	YES
characteristics, and state-specific characteristics					
Includes month and year dummies, region	YES	YES	YES	YES	YES
dummies, and their interactions					
Number of observations	10437	12139	10982	10345	10468

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models.

Table 7B: Instrumental variables effects: impact of average of fertilizer agrichemicals and BOD in the second trimester months.

	Infant	Neo-natal	Post-natal	Height-for-age	Weight-for-age
	mortality	mortality	mortality	z score	z score
Average of dummy for presence	0.068***	0.056	0.004	-1.431	-1.489
of fertilizer in the second trimester	(0.025)	(0.036)	(0.008)	(0.911)	(1.143)
Level of biochemical oxygen	-0.018	0.040	0.018	3.793	10.495
demand in second trimester x 10 ⁻²	(0.144)	(0.178)	(0.089)	(3.269)	(15.329)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific characteristics, and state-specific characteristics	YES	YES	YES	YES	YES
Includes month and year dummies, region	YES	YES	YES	YES	YES
dummies, and their interactions					
Number of observations	10421	12105	10960	10257	10379

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models.

Table 7C: Instrumental variables effects: impact of average of fertilizer agrichemicals and BOD in the third trimester months.

	Infant	Neo-natal	Post-natal	Height-for-age	Weight-for-age
	mortality	mortality	mortality	z score	z score
Average of dummy for presence	0.070*	0.062*	0.001	2.812	2.266
of fertilizer in the third trimester	(0.040)	(0.034)	(0.007)	(2.757)	(1.986)
Level of biochemical oxygen	0.145	0.074	0.024	-2.874	-0.783
demand in third trimester x 10 ⁻²	(0.146)	(0.090)	(0.046)	(2.907)	(2.344)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific	YES	YES	YES	YES	YES
characteristics, and state-specific characteristics					
Includes month and year dummies, region	YES	YES	YES	YES	YES
dummies, and their interactions					
Number of observations	10400	12074	10937	10215	10338

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models.

Table 8: Robustness checks for instruments.

	Log of number	Acc. to pre-	Log of the number	Rich	Rainfall	Air
Identifying instruments	of accidental	or antenatal	of conceptions	household		temperature
	deaths	doctor	in a month			
Autumn rice crop area x Autumn rice	0.001	-0.052	9.447	0.003	0.619	-0.355
sowing months	(0.001)	(0.155)	(8.153)	(0.050)	(1.064)	(0.283)
Summer rice crop area x Summer rice	0.004	0.049	22.407	-0.091	0.536	-1.343***
sowing months	(0.003)	(0.289)	(25.268)	(0.089)	(1.491)	(0.392)
Wheat crop area x Wheat sowing	-0.0001	-0.186	-1.416	0.018	1.846***	-0.916***
months	(0.0003)	(0.115)	(2.985)	(0.015)	(0.537)	(0.219)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES	YES
Includes child, woman and husband- specific characteristics, and state-	YES	YES	YES	YES	YES	YES
specific characteristics Includes month and year dummies, region dummies, and their interactions	YES	YES	YES	YES	YES	YES
R-squared	0.718	0.336	0.693	0.143	0.719	0.971
F-statistic	0.68	1.090	0.050	2.080	5.300	13.440
	[0.576]	[0.373]	[0.686]	[0.131]	[0.006]	[0.0004]
Number of observations	8350	12979	6743	12979	12979	11574

Notes: Weighted to national level with weights provided by the DHS. Table reports OLS regressions. Standard errors in parentheses are clustered by state. *p*-values in square brackets. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. F-statistics reported are for the identifying instruments. Accidental deaths include those from bites/stings, accidental burns, falls, drowning, accidental poisoning, transport and other accidents, suicides and homicides. Rich households are those who own a car. Regressions include a constant term.

Table 8: Robustness checks for instruments continued.

Identifying instruments	Diseases (malaria, TB)	Mother's education	Father's education	Asset ownership	Rural areas	Number of siblings	Consumption
Autumn rice crop area x Autumn	0.212	-0.140	-0.926	-0.065	0.071	0.204	0.043
rice sowing months	(0.205)	(0.238)	(0.963)	(0.109)	(0.059))	(0.128)	(0.052)
Summer rice crop area x Summer	0.722	-0.164	2.732	-0.336	-0.108	0.307	-0.033
rice sowing months	(0.492)	(0.482)	(3.432)	(0.303)	(0.203)	(0.356)	(0.146)
Wheat crop area x Wheat	0.442	0.050	2.143	-0.017	0.017	0.133	0.002
sowing months	(0.640)	(0.084)	(1.551)	0.055)	(0.030)	(0.096)	(0.031)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES	YES	YES
Includes child, woman and husband specific characteristics, and state-	YES	YES	YES	YES	YES	YES	YES
specific characteristics Includes month and year dummies, region dummies, and their interactions	YES	YES	YES	YES	YES	YES	YES
R-squared	0.930	0.349	0.238	0.297	0.601	0.936	0.454
F-statistic	0.890	0.320	2.600	0.610	2.120	2.210	0.340
	[0.469]	[0.812]	[0.077]	[0.612]	[0.125]	[0.114]	[0.795]
Number of observations	8350	12979	13002	12979	12979	12979	12979

Notes: Weighted to national level with weights provided by the DHS. Table reports OLS regressions. Standard errors in parentheses are clustered by state. *p*-values in square brackets. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. F-statistics reported are for the identifying instruments. Mother's education measures whether the mother is literate, father's education measures whether the father is illiterate. Assets measure ownership of car, refrigerators or motorcycles. Consumption measures consumption of green vegetables, fruits, eggs and meat. Regressions include a constant term.

Table 9: Robustness checks for other confounding factors.

			ant mortali	•				eo-natal mo	ortality	
Average of the dummy for the presence of	0.075**	0.077^{**}	0.035**	0.075**	0.075**	0.067^{*}	0.061**	0.037***	0.079^{**}	0.067^{*}
fertilizer chemicals in month of conception	(0.031)	(0.033)	(0.014)	(0.034)	(0.031)	(0.040)	(0.027)	(0.014)	(0.035)	(0.041)
Log of the level of biochemical oxygen	-0.036	-0.017	-0.019	-0.044**	-0.035	-0.030	0.004	0.020	-0.035	-0.029
demand in month of conception	(0.066)	(0.051)	(0.027)	(0.022)	(0.070)	(0.081)	(0.034)	(0.023)	(0.023)	(0.084)
Rainfall	0.002					0.001				
	(0.002)					(0.002)				
Air temperature		-0.017					-0.006			
		(0.011)					(0.006)			
Log number of malaria cases and			-0.007					-0.005		
TB deaths			(0.010)					(0.011)		
Log of wheat yield				-0.003					-0.002	
				(0.005)					(0.007)	
Log of rice yield				-0.001					-0.001	
				(0.001)					(0.001)	
Woman is currently working					0.001					0.001
					(0.002)					(0.002)
Woman works in agriculture					0.001					0.001
					(0.001)					(0.001)
Woman works for family member					-0.001					-0.001
					(0.006)					(0.006)
Woman works for someone else					-0.002					-0.002
					(0.002)					(0.002)
Includes measures of crop area and	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
crop sowing months										
Includes child, woman and husband-spec.	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
characteristics, and state-specific charact.										
Includes month and year dummies, region	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES
dummies, and their interactions										
Number of observations	10497	9302	9721	9302	10497	12201	10852	11830	10852	12201

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10.

Regressions are estimated with two stage least squares models. Number of malaria cases and TB deaths are measured by state and year of conception, as are wheat and rice yields. Results for post-natal mortality are not reported in table due to lack of space, these are available on request. Regressions for rice and wheat yields also include average elevation as a control for market integration.

Table 10A: Instrumental variables effects: impact of average of fertilizer agrichemicals and BOD in the trimester before conception.

	Infant	Neo-natal	Post-natal	Height-for-age	Weight-for-age
	mortality	mortality	mortality	z score	z score
Average of dummy for presence	0.057	0.046	0.001	0.970	0.284
of fertilizer in the trimester before conception	(0.043)	(0.049)	(0.009)	(1.537)	(0.771)
Level of biochemical oxygen demand in the	0.144	0.204	-0.027	0.918	6.101
trimester before conception x 10 ⁻²	(0.264)	(0.263)	(0.054)	(5.093)	(6.284)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific	YES	YES	YES	YES	YES
characteristics, and state-specific characteristics					
Includes month and year dummies, region	YES	YES	YES	YES	YES
dummies, and their interaction					
Number of observations	10437	12139	10982	10345	10468

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models.

Table 10B: Instrumental variables effects: impact of average of fertilizer agrichemicals and BOD in the six months before conception.

	Infant	Neo-natal	Post-natal	Height-for-age	Weight-for-age
	mortality	mortality	mortality	z score	z score
Average of dummy for presence of fertilizer in the	0.085	0.062	0.005	2.716	0.806
six months before conception	(0.065)	(0.052)	(0.009)	(1.682)	(0.805)
Level of biochemical oxygen demand in the six	0.032	0.026^*	0.004	-0.893	-0.249
months before conception x 10 ⁻²	(0.020)	(0.014)	(0.007)	(0.596)	(0.288)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific	YES	YES	YES	YES	YES
characteristics, and state-specific characteristics					
Includes month and year dummies, region	YES	YES	YES	YES	YES
dummies, and their interactions					
Number of observations	10550	12260	11100	10402	10526

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with two stage least squares models.

Appendix Table 1: OLS effects of fertilizer agrichemicals and BOD on outcomes.

	Infant mortality	Neo-natal mortality	Post-natal mortality	Height-for-age z score	Weight-for-age z score
Average of the dummy for the presence of fertilizer	0.002	0.002	-0.00003	-0.051	0.062
chemicals in month of conception	(0.003)	(0.002)	(0.001)	(0.125)	(0.088)
Log of the level of biochemical oxygen demand in	-0.002	-0.001	-0.001	-0.131	-0.543
month of conception	(0.002)	(0.002)	(0.001)	(0.078)	(0.314)
Includes measures of crop area and crop sowing months	YES	YES	YES	YES	YES
Includes child, woman and husband-specific	YES	YES	YES	YES	YES
characteristics, and state-specific characteristics					
Includes month and year dummies, region	YES	YES	YES	YES	YES
dummies, and their interactions					
Number of observations	10497	12201	11046	10402	10526

Notes: Weighted to national level using weights provided by the DHS. Standard errors in parentheses are clustered by state. The notation *** is p<0.01, ** is p<0.05, * is p<0.10. Regressions are estimated with linear models.